Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1979 Jun;95(3):683–696.

An autoradiographic study of cellular proliferation in remyelination of the central nervous system.

S K Ludwin
PMCID: PMC2042311  PMID: 453329

Abstract

The proliferation and origin remyelinating oligodendrocytes was studied by light and electron miscrosopic autoradiography in the superior cerebellar peduncles of mice demyelinated by Cuprizone. In the early phases of demyelination, the cells undergoing mitotic activity were macrophages and astrocytes. In the later phases of demyelination, immature proliferating oligodendrocytes appeared; these differentiated into mature (dark) oligodendrocytes which were responsible for the remyelination of axons seen when animals were again placed on normal diets. The pattern of differentiation recapitulated that seen in developing oligodendrocytes in normal animals. Dark oligodendrocytes did not show mitotic activity. There was no mitotic activity in the subependymal cells around the fourth ventricle adjacent to the superior cerebellar peduncles. This study demonstrates the regenerative capacity of oligodendrocytes and their ability to carry out remeylination in the central nervous system.

Full text

PDF
683

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguayo A. J., Romine J. S., Bray G. M. Experimental necrosis and arrest of proliferation of Schwann cells by cytosine arabinoside. J Neurocytol. 1975 Dec;4(6):663–674. doi: 10.1007/BF01181629. [DOI] [PubMed] [Google Scholar]
  2. Blakemore W. F. Demyelination of the superior cerebellar peduncle in the mouse induced by cuprizone. J Neurol Sci. 1973 Sep;20(1):63–72. doi: 10.1016/0022-510x(73)90118-4. [DOI] [PubMed] [Google Scholar]
  3. Blakemore W. F. Observations on remyelination in the rabbit spinal cord following demyelination induced by lysolecithin. Neuropathol Appl Neurobiol. 1978 Jan-Feb;4(1):47–59. doi: 10.1111/j.1365-2990.1978.tb00528.x. [DOI] [PubMed] [Google Scholar]
  4. Blakemore W. F. Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature. 1977 Mar 3;266(5597):68–69. doi: 10.1038/266068a0. [DOI] [PubMed] [Google Scholar]
  5. Blakemore W. F. Remyelination of the superior cerebellar peduncle in old mice following demyelination induced by cuprizone. J Neurol Sci. 1974 May;22(1):121–126. doi: 10.1016/0022-510x(74)90059-8. [DOI] [PubMed] [Google Scholar]
  6. Blakemore W. F. Remyelination of the superior cerebellar peduncle in the mouse following demyelination induced by feeding cuprizone. J Neurol Sci. 1973 Sep;20(1):73–83. doi: 10.1016/0022-510x(73)90119-6. [DOI] [PubMed] [Google Scholar]
  7. Cavanagh J. B. Reactions of neuroglial cells to injury. Mod Trends Neurol. 1970;5(0):149–163. [PubMed] [Google Scholar]
  8. Dalton M. M., Hommes O. R., Leblond C. P. Correlation of glial proliferation with age in the mouse brain. J Comp Neurol. 1968 Dec;134(4):397–400. doi: 10.1002/cne.901340403. [DOI] [PubMed] [Google Scholar]
  9. KOENIG H., BUNGE M. B., BUNGE R. P. Nucleic acid and protein metabolism in white matter. Observations during experimental demyelination and remyelination; a histochemical and autoradiographic study of spinal cord of the adult cat. Arch Neurol. 1962 Mar;6:177–193. doi: 10.1001/archneur.1962.00450210005002. [DOI] [PubMed] [Google Scholar]
  10. Kopriwa B. M. A reliable, standardized method for ultrastructural electron microscopic radioautography. Histochemie. 1973 Oct 3;37(1):1–17. doi: 10.1007/BF00306855. [DOI] [PubMed] [Google Scholar]
  11. Ling E. A., Paterson J. A., Privat A., Mori S., Leblond C. P. Investigation of glial cells in semithin sections. I. Identification of glial cells in the brain of young rats. J Comp Neurol. 1973 May 1;149(1):43–71. doi: 10.1002/cne.901490104. [DOI] [PubMed] [Google Scholar]
  12. Ludwin S. K. Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab Invest. 1978 Dec;39(6):597–612. [PubMed] [Google Scholar]
  13. Mori S., Leblond C. P. Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats. J Comp Neurol. 1970 May;139(1):1–28. doi: 10.1002/cne.901390102. [DOI] [PubMed] [Google Scholar]
  14. Ogata J., Feigin I. Schwann cells and regenerated peripheral myelin in multiple sclerosis: an ultrastructural study. Neurology. 1975 Aug;25(8):713–716. doi: 10.1212/wnl.25.8.713. [DOI] [PubMed] [Google Scholar]
  15. Paterson J. A., Privat A., Ling E. A., Leblond C. P. Investigation of glial cells in semithin sections. 3. Transformation of subependymal cells into glial cells, as shown by radioautography after 3 H-thymidine injection into the lateral ventricle of the brain of young rats. J Comp Neurol. 1973 May 1;149(1):83–102. doi: 10.1002/cne.901490106. [DOI] [PubMed] [Google Scholar]
  16. Prineas J., Raine C. S., Wísniewski H. An ultrastructural study of experimental demyelination and remyelination. 3. Chronic experimental allergic encephalomyelitis in the central nervous system. Lab Invest. 1969 Dec;21(6):472–483. [PubMed] [Google Scholar]
  17. Raine C. S. Membrane specialisations between demyelinated axons and astroglia in chronic EAE lesions and multiple sclerosis plaques. Nature. 1978 Sep 28;275(5678):326–327. doi: 10.1038/275326a0. [DOI] [PubMed] [Google Scholar]
  18. Skoff R. P., Price D. L., Stocks A. Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. I. Cell proliferation. J Comp Neurol. 1976 Oct 1;169(3):291–312. doi: 10.1002/cne.901690303. [DOI] [PubMed] [Google Scholar]
  19. Skoff R. P., Price D. L., Stocks A. Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. II. Time of origin. J Comp Neurol. 1976 Oct 1;169(3):313–334. doi: 10.1002/cne.901690304. [DOI] [PubMed] [Google Scholar]
  20. Tennekoon G. I., Cohen S. R., Price D. L., McKhann G. M. Myelinogenesis in optic nerve. A morphological, autoradiographic, and biochemical analysis. J Cell Biol. 1977 Mar;72(3):604–616. doi: 10.1083/jcb.72.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Valat J., Fulcrand J., Privat A., Marty R. Radio-autographic study of cell proliferation secondary to Wallerian degeneration in the postnatal rat optic nerve. Acta Neuropathol. 1978 Jun 30;42(3):205–208. doi: 10.1007/BF00690358. [DOI] [PubMed] [Google Scholar]
  22. Vaughn J. E. An electron microscopic analysis of gliogenesis in rat optic nerves. Z Zellforsch Mikrosk Anat. 1969;94(3):293–324. doi: 10.1007/BF00319179. [DOI] [PubMed] [Google Scholar]
  23. Wiśniewski H., Raine C. S. An ultrastructural study of experimental demyelination and remyelination. V. Central and peripheral nervous system lesions caused by diphtheria toxin. Lab Invest. 1971 Jul;25(1):73–80. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES