Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1987 Dec;53(12):2987–2991. doi: 10.1128/aem.53.12.2987-2991.1987

Properties of Lactose Plasmid pLY101 in Lactobacillus casei

Mariko Shimizu-Kadota 1
PMCID: PMC204236  PMID: 16347515

Abstract

A starter strain, Lactobacillus casei C257, was found to carry a lactose plasmid, pLY101. Restriction mapping showed that pLY101 DNA was 68.2 kilobases long. Since a non-lactose-utilizing variant of C257, MSK248, lost phospho-β-galactosidase (P-β-gal) activity and pLY101 DNA had a sequence(s) homologous to the streptococcal fragment including a P-β-gal gene, pLY101 is likely to encode a P-β-gal gene required for lactose metabolism in C257. MSK248 grew in galactose medium at a rate identical to that of C257 and retained phosphoenolpyruvate-dependent phosphotransferase system activity for lactose similar to that of C257. Therefore, the C257 chromosome appears to encode a complete set of genes for the lactose-phosphotransferase system and the predominant galactose metabolic pathway in C257. pLY101 DNA had a sequence homologous to a lactobacillus insertion sequence, ISL1, which mapped more than 12 kilobases from the sequence homologous to the streptococcal P-β-gal fragment.

Full text

PDF
2987

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. G., McKay L. L. Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol. 1983 Sep;46(3):549–552. doi: 10.1128/aem.46.3.549-552.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chassy B. M., Thompson J. Regulation and characterization of the galactose-phosphoenolpyruvate-dependent phosphotransferase system in Lactobacillus casei. J Bacteriol. 1983 Jun;154(3):1204–1214. doi: 10.1128/jb.154.3.1204-1214.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chassy B. M., Thompson J. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei. J Bacteriol. 1983 Jun;154(3):1195–1203. doi: 10.1128/jb.154.3.1195-1203.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crow V. L., Davey G. P., Pearce L. E., Thomas T. D. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism. J Bacteriol. 1983 Jan;153(1):76–83. doi: 10.1128/jb.153.1.76-83.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. EFTHYMIOU C., HANSEN P. A. An antigenic analysis of Lactobacillus acidophilus. J Infect Dis. 1962 May-Jun;110:258–267. doi: 10.1093/infdis/110.3.258. [DOI] [PubMed] [Google Scholar]
  6. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  7. Harlander S. K., McKay L. L., Schachtele C. F. Molecular cloning of the lactose-metabolizing genes from Streptococcus lactis. Appl Environ Microbiol. 1984 Aug;48(2):347–351. doi: 10.1128/aem.48.2.347-351.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Inamine J. M., Lee L. N., LeBlanc D. J. Molecular and genetic characterization of lactose-metabolic genes of Streptococcus cremoris. J Bacteriol. 1986 Sep;167(3):855–862. doi: 10.1128/jb.167.3.855-862.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iwata M., Mada M., Ishiwa H. Protoplast fusion of Lactobacillus fermentum. Appl Environ Microbiol. 1986 Aug;52(2):392–393. doi: 10.1128/aem.52.2.392-393.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kandler O. Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek. 1983 Sep;49(3):209–224. doi: 10.1007/BF00399499. [DOI] [PubMed] [Google Scholar]
  11. LeBlanc D. J., Crow V. L., Lee L. N., Garon C. F. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis. J Bacteriol. 1979 Feb;137(2):878–884. doi: 10.1128/jb.137.2.878-884.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee L. J., Hansen J. B., Jagusztyn-Krynicka E. K., Chassy B. M. Cloning and expression of the beta-D-phosphogalactoside galactohydrolase gene of Lactobacillus casei in Escherichia coli K-12. J Bacteriol. 1982 Dec;152(3):1138–1146. doi: 10.1128/jb.152.3.1138-1146.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maeda S., Gasson M. J. Cloning, expression and location of the Streptococcus lactis gene for phospho-beta-D-galactosidase. J Gen Microbiol. 1986 Feb;132(2):331–340. doi: 10.1099/00221287-132-2-331. [DOI] [PubMed] [Google Scholar]
  14. McKay L. L. Functional properties of plasmids in lactic streptococci. Antonie Van Leeuwenhoek. 1983 Sep;49(3):259–274. doi: 10.1007/BF00399502. [DOI] [PubMed] [Google Scholar]
  15. Park Y. H., McKay L. L. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis. J Bacteriol. 1982 Feb;149(2):420–425. doi: 10.1128/jb.149.2.420-425.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Postma P. W., Lengeler J. W. Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. Microbiol Rev. 1985 Sep;49(3):232–269. doi: 10.1128/mr.49.3.232-269.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Premi L., Sandine W. E., Elliker P. R. Lactose-hydrolyzing enzymes of Lactobacillus species. Appl Microbiol. 1972 Jul;24(1):51–57. doi: 10.1128/am.24.1.51-57.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shimizu-Kadota M., Kiwaki M., Hirokawa H., Tsuchida N. ISL1: a new transposable element in Lactobacillus casei. Mol Gen Genet. 1985;200(2):193–198. doi: 10.1007/BF00425423. [DOI] [PubMed] [Google Scholar]
  19. Shimizu-Kadota M., Sakurai T. Prophage Curing in Lactobacillus casei by Isolation of a Thermoinducible Mutant. Appl Environ Microbiol. 1982 Jun;43(6):1284–1287. doi: 10.1128/aem.43.6.1284-1287.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shimizu-Kadota M., Sakurai T., Tsuchida N. Prophage Origin of a Virulent Phage Appearing on Fermentations of Lactobacillus casei S-1. Appl Environ Microbiol. 1983 Feb;45(2):669–674. doi: 10.1128/aem.45.2.669-674.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shimizu-Kadota M., Tsuchida N. Physical mapping of the virion and the prophage DNAs of a temperate Lactobacillus phage phi FSW. J Gen Microbiol. 1984 Feb;130(2):423–430. doi: 10.1099/00221287-130-2-423. [DOI] [PubMed] [Google Scholar]
  22. Thompson J. Galactose transport systems in Streptococcus lactis. J Bacteriol. 1980 Nov;144(2):683–691. doi: 10.1128/jb.144.2.683-691.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES