Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Apr;175(7):1886–1890. doi: 10.1128/jb.175.7.1886-1890.1993

Axial filament formation in Bacillus subtilis: induction of nucleoids of increasing length after addition of chloramphenicol to exponential-phase cultures approaching stationary phase.

J E Bylund 1, M A Haines 1, P J Piggot 1, M L Higgins 1
PMCID: PMC204252  PMID: 7681431

Abstract

When chloramphenicol was added to a culture of Bacillus subtilis in early exponential growth, microscopic observation of cells stained by 4',6-diamidino-2-phenylindole showed nucleoids that had changed in appearance from irregular spheres and dumbbells to large, brightly stained spheres and ovals. In contrast, the addition of chloramphenicol to cultures in mid- and late exponential growth showed cells with elongated nucleoids whose frequency and length increased as the culture approached stationary phase. The kinetics of nucleoid elongation after the addition of chloramphenicol to exponential-phase cultures was complex. Immediately after treatment, the rate of nucleoid elongation was very rapid. The nucleoid then elongated steadily for about 4 min, after which the rate of elongation decreased considerably. Nucleoids of cells treated with 6-(p-hydroxyphenylazo)-uracil (an inhibitor of DNA synthesis) exhibited the immediate rapid elongation upon chloramphenicol treatment but not the subsequent changes. These observations suggest that axial filament formation during stationary phase (stage I of sporulation) in the absence of chloramphenicol results from changes in nucleoid structure that are initiated earlier, during exponential growth.

Full text

PDF
1886

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balassa G. The genetic control of spore formation in bacilli. Curr Top Microbiol Immunol. 1971;56:99–192. doi: 10.1007/978-3-642-65241-7_4. [DOI] [PubMed] [Google Scholar]
  2. Bohrmann B., Villiger W., Johansen R., Kellenberger E. Coralline shape of the bacterial nucleoid after cryofixation. J Bacteriol. 1991 May;173(10):3149–3158. doi: 10.1128/jb.173.10.3149-3158.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bourbeau P., Dicker D., Higgins M. L., Daneo-Moore L. Effect of cell cycle stages on the central density of Enterococcus faecium ATCC 9790. J Bacteriol. 1989 Apr;171(4):1982–1986. doi: 10.1128/jb.171.4.1982-1986.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown N. C. Inhibition of bacterial DNA replication by 6-(p-hydroxyphenylazo)-uracil: differential effect on repair and semi-conservative synthesis in Bacillus subtilis. J Mol Biol. 1971 Jul 14;59(1):1–16. doi: 10.1016/0022-2836(71)90409-8. [DOI] [PubMed] [Google Scholar]
  5. Daneo-Moore L., Dicker D., Higgins M. L. Structure of the nucleoid in cells of Streptococcus faecalis. J Bacteriol. 1980 Feb;141(2):928–937. doi: 10.1128/jb.141.2.928-937.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daneo-Moore L., Higgins M. L. Morphokinetic reaction of Streptococcus faecalis (ATCC 9790) cells to the specific inhibition of macromolecular synthesis: nucleoid condensation on the inhibition of protein synthesis. J Bacteriol. 1972 Mar;109(3):1210–1220. doi: 10.1128/jb.109.3.1210-1220.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edelstein E., Parks L., Tsien H. C., Daneo-Moore L., Higgins M. L. Nucleoid structure in freeze fractures of Streptococcus faecalis: effects of filtration and chilling. J Bacteriol. 1981 May;146(2):798–803. doi: 10.1128/jb.146.2.798-803.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giesbrecht P., Ruska H. Uber Veränderungen der Feinstrukturen von Bakterien unter der Einwirkung von Chloramphenicol. Klin Wochenschr. 1968 Jun 1;46(11):575–582. doi: 10.1007/BF01747836. [DOI] [PubMed] [Google Scholar]
  9. Hiraga S., Niki H., Ogura T., Ichinose C., Mori H., Ezaki B., Jaffé A. Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J Bacteriol. 1989 Mar;171(3):1496–1505. doi: 10.1128/jb.171.3.1496-1505.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hobot J. A., Bjornsti M. A., Kellenberger E. Use of on-section immunolabeling and cryosubstitution for studies of bacterial DNA distribution. J Bacteriol. 1987 May;169(5):2055–2062. doi: 10.1128/jb.169.5.2055-2062.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KELLENBERGER E., RYTER A., SECHAUD J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol. 1958 Nov 25;4(6):671–678. doi: 10.1083/jcb.4.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kellenberger E. Functional consequences of improved structural information on bacterial nucleoids. Res Microbiol. 1991 Feb-Apr;142(2-3):229–238. doi: 10.1016/0923-2508(91)90035-9. [DOI] [PubMed] [Google Scholar]
  13. Morgan C., Rosenkranz H. S., Carr H. S., Rose H. M. Electron microscopy of chloramphenicol-treated Escherichia coli. J Bacteriol. 1967 Jun;93(6):1987–2002. doi: 10.1128/jb.93.6.1987-2002.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ryter A., Schaeffer P., Ionesco H. Classification cytologique, par leur stade de blocage, des mutants de sporulation de Bacillus subtilis Marburg. Ann Inst Pasteur (Paris) 1966 Mar;110(3):305–315. [PubMed] [Google Scholar]
  15. SCHAECHTER M., LAING V. O. Direct observation of fusion of bacterial nuclei. J Bacteriol. 1961 Apr;81:667–668. doi: 10.1128/jb.81.4.667-668.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Setlow B., Magill N., Febbroriello P., Nakhimovsky L., Koppel D. E., Setlow P. Condensation of the forespore nucleoid early in sporulation of Bacillus species. J Bacteriol. 1991 Oct;173(19):6270–6278. doi: 10.1128/jb.173.19.6270-6278.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Valkenburg J. A., Woldringh C. L. Phase separation between nucleoid and cytoplasm in Escherichia coli as defined by immersive refractometry. J Bacteriol. 1984 Dec;160(3):1151–1157. doi: 10.1128/jb.160.3.1151-1157.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Van Iterson W., Michels P. A., Vyth-Dreese F., Aten J. A. Nuclear and cell division in Bacillus subtilis: dormant nucleoids in stationary-phase cells and their activation. J Bacteriol. 1975 Mar;121(3):1189–1199. doi: 10.1128/jb.121.3.1189-1199.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Woldringh C. L., Mulder E., Huls P. G., Vischer N. Toporegulation of bacterial division according to the nucleoid occlusion model. Res Microbiol. 1991 Feb-Apr;142(2-3):309–320. doi: 10.1016/0923-2508(91)90046-d. [DOI] [PubMed] [Google Scholar]
  20. Woldringh C. L., Nanninga N. Organization of the nucleoplasm in Escherichia coli visualized by phase-contrast light microscopy, freeze fracturing, and thin sectioning. J Bacteriol. 1976 Sep;127(3):1455–1464. doi: 10.1128/jb.127.3.1455-1464.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wu J. J., Howard M. G., Piggot P. J. Regulation of transcription of the Bacillus subtilis spoIIA locus. J Bacteriol. 1989 Feb;171(2):692–698. doi: 10.1128/jb.171.2.692-698.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zusman D. R., Carbonell A., Haga J. Y. Nucleoid condensation and cell division in Escherichia coli MX74T2 ts52 after inhibition of protein synthesis. J Bacteriol. 1973 Sep;115(3):1167–1178. doi: 10.1128/jb.115.3.1167-1178.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van Iterson W., Aten J. A. Nuclear and cell division in Bacillus subtilis. Antibiotic-induced morphological changes. Antonie Van Leeuwenhoek. 1976;42(4):365–386. doi: 10.1007/BF00410169. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES