Abstract
The effects of drying time during freeze-drying on the outermost cell surface of an encapsulated strain of Staphylococcus aureus S-7 (Smith, diffuse) were investigated, with special attention paid to capsule and slime production. To quantify capsule and slime production, capsule antigen production and cellular characteristics such as growth type in serum-soft agar, cell volume index, and clumping factor reaction were examined. After freeze-drying the colonial morphology of strain S-7 was altered from a diffuse to a compact type in serum-soft agar. In accordance with these changes, the titer of the clumping factor reaction increased while the cell volume index, capsule and slime production, and capsule antigen production were markedly decreased in parallel with the period of freeze-drying. The ability of the strain to adhere to collagen, fibrinogen, and soybean lectin was also compared before and after freeze-drying. Fibrinogen levels slightly increased when 10% skim milk and 2% honey were used as cryoprotective agents and showed a remarkable increase when 0.05 M phosphate buffer was used as a control. Also, the ability of strain S-7 to adhere to soybean lectin declined, whereas no changes were observed for collagen under any conditions. Strain S-7 was phage nontypable before freeze-drying but the number of typable cells increased after freeze-drying; phage-typable cells reacted to phage 52 alone after 5 h of freeze-drying, but additional cells also proved to be phage typable to phage 42E after 10 h. Electron micrographs indicated that strain S-7, an encapsulated strain, was converted to an unencapsulated state after freeze-drying.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Calcott P. H., MacLeod R. A. The survival of Escherichia coli from freeze-thaw damage: permeability barrier damage and viability. Can J Microbiol. 1975 Nov;21(11):1724–1732. doi: 10.1139/m75-253. [DOI] [PubMed] [Google Scholar]
- Costerton J. W., Geesey G. G., Cheng K. J. How bacteria stick. Sci Am. 1978 Jan;238(1):86–95. doi: 10.1038/scientificamerican0178-86. [DOI] [PubMed] [Google Scholar]
- Formal S. B., LaBrec E. H., Kent T. H., May H. C., Lowenthal J. P., Berman S. Biological properties of freeze-dried attenuated shigella vaccines. Proc Soc Exp Biol Med. 1967 Jan;124(1):284–289. doi: 10.3181/00379727-124-31724. [DOI] [PubMed] [Google Scholar]
- Heckly R. J. Preservation of microorganisms. Adv Appl Microbiol. 1978;24:1–53. doi: 10.1016/s0065-2164(08)70635-x. [DOI] [PubMed] [Google Scholar]
- Mackey B. M., Derrick C. M. The effect of sublethal injury by heating, freezing, drying and gamma-radiation on the duration of the lag phase of Salmonella typhimurium. J Appl Bacteriol. 1982 Oct;53(2):243–251. doi: 10.1111/j.1365-2672.1982.tb04683.x. [DOI] [PubMed] [Google Scholar]
- Ohtomo T. Interaction between bile acids and staphylococcal polysaccharide: inhibition of capsule formation in encapsulated mutant strains (taurine+, taurine-) of Staphylococcus aureus. Can J Microbiol. 1983 Dec;29(12):1653–1660. doi: 10.1139/m83-253. [DOI] [PubMed] [Google Scholar]
- Ohtomo T., Yoshida K. Adhesion of Staphylococcus aureus to fibrinogen, collagen and lectin in relation to cell surface structure. Zentralbl Bakteriol Mikrobiol Hyg A. 1988 May;268(3):325–340. doi: 10.1016/s0176-6724(88)80017-8. [DOI] [PubMed] [Google Scholar]
- Ohtomo T., Yoshida K., Clemente C. L. Relationship of capsular type to biochemical and immunological properties of teichoic acid preparations from unencapsulated strains of Staphylococcus aureus. Infect Immun. 1976 Nov;14(5):1113–1118. doi: 10.1128/iai.14.5.1113-1118.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohtomo T., Yoshida K. Encapsulation by transformation of strains of Staphylococcus aureus determined by the serum-soft agar technique. Zentralbl Bakteriol Orig A. 1978 Dec;242(4):436–445. [PubMed] [Google Scholar]
- Ohtomo T., Yoshida K., Iizuka H., San Clemente C. L. Relative stability of biological properties in encapsulated strains of Staphylococcus aureus after freezing and freeze-drying. Cryobiology. 1978 Aug;15(4):461–468. doi: 10.1016/0011-2240(78)90066-4. [DOI] [PubMed] [Google Scholar]
- Ohtomo T., Yoshida K., San Clemente C. L. Effect of bile acid derivatives on taurine biosynthesis and extracellular slime production in encapsulated Staphylococcus aureus S-7. Infect Immun. 1981 Feb;31(2):798–807. doi: 10.1128/iai.31.2.798-807.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Opdebeeck J. P., O'Boyle D., Frost A. J. The expression of capsule in serum-soft agar by Staphylococcus aureus isolated from human clinical sources. J Med Microbiol. 1985 Oct;20(2):275–278. doi: 10.1099/00222615-20-2-275. [DOI] [PubMed] [Google Scholar]
- Rahn R. O., Hosszu H. L. Influence of relative humidity on the photochemistry of DNA films. Biochim Biophys Acta. 1969 Sep 17;190(1):126–131. doi: 10.1016/0005-2787(69)90161-0. [DOI] [PubMed] [Google Scholar]
- Ray B., Jezeski J. J., Busta F. F. Repair of injury in freeze-dried Salmonella anatum. Appl Microbiol. 1971 Sep;22(3):401–407. doi: 10.1128/am.22.3.401-407.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray B., Speck M. L., Dobrogosz W. J. Cell wall lipopolysaccharide damage in Escherichia coli due to freezing. Cryobiology. 1976 Apr;13(2):153–160. doi: 10.1016/0011-2240(76)90127-9. [DOI] [PubMed] [Google Scholar]
- Ray B., Speck M. L. Freeze-injury in bacteria. CRC Crit Rev Clin Lab Sci. 1973 Aug;4(2):161–213. doi: 10.3109/10408367309151556. [DOI] [PubMed] [Google Scholar]
- Richardson W. P., Sadoff J. C. Production of a capsule of Neisseria gonorrhoeae. Infect Immun. 1977 Feb;15(2):663–664. doi: 10.1128/iai.15.2.663-664.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHARPE M. E., WHEATER D. M. The physiological and serological characters of freeze-dried lactobacilli. J Gen Microbiol. 1955 Jun;12(3):513–518. doi: 10.1099/00221287-12-3-513. [DOI] [PubMed] [Google Scholar]
- Servin-Massieu M. Effects of freeze-drying and sporulation on microbial variation. Curr Top Microbiol Immunol. 1971;54:119–150. doi: 10.1007/978-3-642-65123-6_5. [DOI] [PubMed] [Google Scholar]
- Servín-Massieu M., Cruz-Camarillo R. Variants of Serratia marcescens induced by freeze-drying. Appl Microbiol. 1969 Oct;18(4):689–691. doi: 10.1128/am.18.4.689-691.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinskey T. J., Silverman G. J. Characterization of injury incurred by Escherichia coli upon freeze-drying. J Bacteriol. 1970 Feb;101(2):429–437. doi: 10.1128/jb.101.2.429-437.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith R. M., Parisi J. T., Vidal L., Baldwin J. N. Nature of the genetic determinant controlling encapsulation in Staphylococcus aureus Smith. Infect Immun. 1977 Jul;17(1):231–234. doi: 10.1128/iai.17.1.231-234.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sompolinsky D., Samra Z., Karakawa W. W., Vann W. F., Schneerson R., Malik Z. Encapsulation and capsular types in isolates of Staphylococcus aureus from different sources and relationship to phage types. J Clin Microbiol. 1985 Nov;22(5):828–834. doi: 10.1128/jcm.22.5.828-834.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verbrugh H. A., Peterson P. K., Nguyen B. Y., Sisson S. P., Kim Y. Opsonization of encapsulated Staphylococcus aureus: the role of specific antibody and complement. J Immunol. 1982 Oct;129(4):1681–1687. [PubMed] [Google Scholar]
- West T. E., Lewis B. A., Apicella M. A. Immunological characterization of an exopolysaccharide from the Staphylococcus aureus strain Smith diffuse. J Gen Microbiol. 1987 Feb;133(2):431–438. doi: 10.1099/00221287-133-2-431. [DOI] [PubMed] [Google Scholar]
- Williams D. L., Calcott P. H. Role of DNA repair genes and an R plasmid in conferring cryoresistance on Pseudomonas aeruginosa. J Gen Microbiol. 1982 Jan;128(1):215–218. doi: 10.1099/00221287-128-1-215. [DOI] [PubMed] [Google Scholar]
- Yamasato K., Okuno D., Otomo T. Proceedings: Preservation of bacteria by freezing at moderately low temperatures. Cryobiology. 1973 Nov;10(5):453–463. doi: 10.1016/0011-2240(73)90075-8. [DOI] [PubMed] [Google Scholar]
- Yoshida K., Ekstedt R. D. Relation of mucoid growth of Staphylococcus aureus to clumping factor reaction, morphology in serum-soft agar, and virulence. J Bacteriol. 1968 Oct;96(4):902–908. doi: 10.1128/jb.96.4.902-908.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida K., Nakamura A., Otomo T., Iwami S. Detection of capsular antigen production in unencapsulated strains of Staphylococcus aureus. Infect Immun. 1974 Apr;9(4):620–623. doi: 10.1128/iai.9.4.620-623.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida K., Ohtomo T. Alteration of capsular type of encapsulated strains of Staphylococcus aureus during freeze-drying and storage. Experientia. 1984 Jan 15;40(1):93–94. doi: 10.1007/BF01959120. [DOI] [PubMed] [Google Scholar]
- Yoshida K., Smith M. R., Naito Y. Biological and Immunological Properties of Encapsulated Strains of Staphylococcus aureus from Human Sources. Infect Immun. 1970 Nov;2(5):528–532. doi: 10.1128/iai.2.5.528-532.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida K., Umeda A., Ohshima Y. Induction of resistance in mice by the capsular polysaccharide antigens of Staphylococcus aureus. Microbiol Immunol. 1987;31(7):649–656. doi: 10.1111/j.1348-0421.1987.tb03125.x. [DOI] [PubMed] [Google Scholar]
- de Valdez G. F., de Giori G. S., de Ruiz Holgado A. P., Oliver G. Effect of the rehydration medium on the recovery of freeze-dried lactic acid bacteria. Appl Environ Microbiol. 1985 Nov;50(5):1339–1341. doi: 10.1128/aem.50.5.1339-1341.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

