Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Oct;54(10):2515–2520. doi: 10.1128/aem.54.10.2515-2520.1988

Heat shock affects permeability and resistance of Bacillus stearothermophilus spores.

T C Beaman 1, H S Pankratz 1, P Gerhardt 1
PMCID: PMC204301  PMID: 3202631

Abstract

Heat shock of dormant spores of Bacillus stearothermophilus ATCC 7953 at 100 or 80 degrees C for short times, the so-called activation or breaking of dormancy, was investigated by separating the resulting spores by buoyant density centrifugation into a band at 1.240 g/ml that was distinct from another band at 1.340 g/ml, the same density as the original spores. The proportion of spores at 1.240 g/ml became larger when the original dormant spores were heated for a longer period of time, but integument-stripped dormant spores were quickly and completely converted to spores with a band at 1.240 g/ml. The spores with bands at both 1.240 and 1.340 g/ml were germinable faster than the original dormant spores and thus were considered to be activated. The spores with a band at 1.240 g/ml, which were considered to be fully activated, were apparently permeabilized, with a resulting complete depletion of dipicolinic acid, partial depletion of minerals, susceptibility to lysozyme action, permeation of the gradient medium, changed structural appearance in electron micrographs of thin-sectioned spores, and partly decreased heat resistance (D100 = 453 min) compared with the original dormant spores (D100 = 760 min). However, the fully activated spores with a band at 1.240 g/ml, although devoid of dipicolinic acid, still were much more resistant than germinated spores or vegetative cells (D100 = 0.1 min). The spores with a band at 1.340 g/ml, which were considered to be partly activated, showed no evidence of permeabilization and were much more heat resistant (D100 = 1,960 min) than the original dormant spores.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
2515

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaman T. C., Gerhardt P. Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation. Appl Environ Microbiol. 1986 Dec;52(6):1242–1246. doi: 10.1128/aem.52.6.1242-1246.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beaman T. C., Greenamyre J. T., Corner T. R., Pankratz H. S., Gerhardt P. Bacterial spore heat resistance correlated with water content, wet density, and protoplast/sporoplast volume ratio. J Bacteriol. 1982 May;150(2):870–877. doi: 10.1128/jb.150.2.870-877.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beaman T. C., Pankratz H. S., Gerhardt P. Ultrastructure of the exosporium and underlying inclusions in spores of Bacillus megaterium strains. J Bacteriol. 1972 Mar;109(3):1198–1209. doi: 10.1128/jb.109.3.1198-1209.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown M. R., Brown M. W., Porter G. S. Activation of Bacillus stearothermophilus spores and release of dipicolinic acid after hydrochloric acid treatment. J Pharm Pharmacol. 1968 Jan;20(1):80–80. doi: 10.1111/j.2042-7158.1968.tb09630.x. [DOI] [PubMed] [Google Scholar]
  5. Brown M. R., Melling J. Release of dipicolinic acid and calcium and activation of Bacillus stearothermophilus spores as a function of time, temperature and pH. J Pharm Pharmacol. 1973 Jun;25(6):478–483. doi: 10.1111/j.2042-7158.1973.tb09136.x. [DOI] [PubMed] [Google Scholar]
  6. COOK A. M., BROWN M. R. THE RELATION BETWEEN HEAT ACTIVATION AND COLONY FORMATION FOR THE SPORES OF BACILLUS STEAROTHERMOPHILUS. J Pharm Pharmacol. 1964 Nov;16:725–732. doi: 10.1111/j.2042-7158.1964.tb07396.x. [DOI] [PubMed] [Google Scholar]
  7. Cassier M., Ryter A. Sur un mutant de Clostridium perfringens donnant des spores sans tuniques à germination lysozyme-dépendante. Ann Inst Pasteur (Paris) 1971 Dec;121(6):717–732. [PubMed] [Google Scholar]
  8. Curran H. R., Evans F. R. Heat Activation Inducing Germination in the Spores of Thermotolerant and Thermophilic Aerobic Bacteria. J Bacteriol. 1945 Apr;49(4):335–346. doi: 10.1128/jb.49.4.335-346.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dean D. H., Douthit H. A. Buoyant density heterogeneity in spores of Bacillus subtilis: biochemical and physiological basis. J Bacteriol. 1974 Feb;117(2):601–610. doi: 10.1128/jb.117.2.601-610.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FINLEY N., FIELDS M. L. Heat activation and heat-induced dormancy of Bacillus stearothermophilus spores. Appl Microbiol. 1962 May;10:231–236. doi: 10.1128/am.10.3.231-236.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Foerster H. F. Activation and germination characteristics observed in endospores of thermophilic strains of Bacillus. Arch Microbiol. 1983 Jun;134(3):175–181. doi: 10.1007/BF00407754. [DOI] [PubMed] [Google Scholar]
  12. Gould G. W., Jones A., Wrighton C. Limitations of the initiation of germination of bacterial spores as a spore control procedure. J Appl Bacteriol. 1968 Sep;31(3):357–366. doi: 10.1111/j.1365-2672.1968.tb00378.x. [DOI] [PubMed] [Google Scholar]
  13. Hanson R. S., Curry M. V., Garner J. V., Halvorson H. O. Mutants of Bacillus cereus strain T that produce thermoresistant spores lacking dipicolinate and have low levels of calcium. Can J Microbiol. 1972 Jul;18(7):1139–1143. doi: 10.1139/m72-175. [DOI] [PubMed] [Google Scholar]
  14. Hughey V. L., Johnson E. A. Antimicrobial activity of lysozyme against bacteria involved in food spoilage and food-borne disease. Appl Environ Microbiol. 1987 Sep;53(9):2165–2170. doi: 10.1128/aem.53.9.2165-2170.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. JANSSEN F. W., LUND A. J., ANDERSON L. E. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958 Jan 3;127(3288):26–27. doi: 10.1126/science.127.3288.26. [DOI] [PubMed] [Google Scholar]
  16. Koshikawa T., Beaman T. C., Pankratz H. S., Nakashio S., Corner T. R., Gerhardt P. Resistance, germination, and permeability correlates of Bacillus megaterium spores successively divested of integument layers. J Bacteriol. 1984 Aug;159(2):624–632. doi: 10.1128/jb.159.2.624-632.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lindsay J. A., Beaman T. C., Gerhardt P. Protoplast water content of bacterial spores determined by buoyant density sedimentation. J Bacteriol. 1985 Aug;163(2):735–737. doi: 10.1128/jb.163.2.735-737.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mackey B. M., Derrick C. M. Elevation of the heat resistance of Salmonella typhimurium by sublethal heat shock. J Appl Bacteriol. 1986 Nov;61(5):389–393. doi: 10.1111/j.1365-2672.1986.tb04301.x. [DOI] [PubMed] [Google Scholar]
  19. Mallidis C. G., Scholefield J. S. The release of dipicolinic acid during heating and its relation to the heat destruction of Bacillus stearothermophilus spores. J Appl Bacteriol. 1985 Nov;59(5):479–486. doi: 10.1111/j.1365-2672.1985.tb03348.x. [DOI] [PubMed] [Google Scholar]
  20. Nakashio S., Gerhardt P. Protoplast dehydration correlated with heat resistance of bacterial spores. J Bacteriol. 1985 May;162(2):571–578. doi: 10.1128/jb.162.2.571-578.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ou L. T., Marquis R. E. Coccal cell-wall compactness and the swelling action of denaturants. Can J Microbiol. 1972 May;18(5):623–629. doi: 10.1139/m72-099. [DOI] [PubMed] [Google Scholar]
  22. Prentice G. A., Wolfe F. H., Clegg L. F. The use of density gradient centrifugation for the separation of germinated from nongerminated spores. J Appl Bacteriol. 1972 Jun;35(2):345–349. doi: 10.1111/j.1365-2672.1972.tb03706.x. [DOI] [PubMed] [Google Scholar]
  23. Tamir H., Gilvarg C. Density gradient centrifugation for the separation of sporulating forms of bacteria. J Biol Chem. 1966 Mar 10;241(5):1085–1090. [PubMed] [Google Scholar]
  24. Tisa L. S., Koshikawa T., Gerhardt P. Wet and dry bacterial spore densities determined by buoyant sedimentation. Appl Environ Microbiol. 1982 Jun;43(6):1307–1310. doi: 10.1128/aem.43.6.1307-1310.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES