Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Nov;54(11):2683–2688. doi: 10.1128/aem.54.11.2683-2688.1988

Degradation of 2-hydroxybiphenyl and 2,2'-dihydroxybiphenyl by Pseudomonas sp. strain HBP1.

H P Kohler 1, D Kohler-Staub 1, D D Focht 1
PMCID: PMC204356  PMID: 3214154

Abstract

Pseudomonas sp. strain HBP1 was found to grow on 2-hydroxy- and 2,2'-dihydroxy-biphenyl as the sole carbon and energy sources. The first step in the degradation of these compounds was catalyzed by an NADH-dependent monooxygenase. The enzyme inserted a hydroxyl group adjacent to the already existing hydroxyl group to form 2,3-dihydroxybiphenyl when acting on 2-hydroxybiphenyl and to form 2,2',3-trihydroxybiphenyl when acting on 2,2'-dihydroxybiphenyl. To be substrates of the monooxygenase, compounds required a 2-hydroxyphenyl-R structure, with R being a hydrophobic group (e.g., methyl, ethyl, propyl, sec-butyl, phenyl, or 2-hydroxyphenyl). Several chlorinated hydroxybiphenyls served as pseudosubstrates by effecting consumption of NADH and oxygen without being hydroxylated. Further degradation of 2,3-dihydroxy- and 2,2',3-trihydroxybiphenyl involved meta cleavage, with subsequent formation of benzoate and salicylate, respectively.

Full text

PDF
2683

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed M., Focht D. D. Degradation of polychlorinated biphenyls by two species of Achromobacter. Can J Microbiol. 1973 Jan;19(1):47–52. doi: 10.1139/m73-007. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Catelani D., Colombi A. Metabolism of biphenyl. Structure and physicochemical properties of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid, the meta-cleavage product from 2,3-dihydroxybiphenyl by Pseudomonas putida. Biochem J. 1974 Nov;143(2):431–434. doi: 10.1042/bj1430431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Catelani D., Colombi A., Sorlini C., Treccani V. Metabolism of biphenyl. 2-Hydroxy-6-oxo-6-phenylhexa-2,4-dienoate: the meta-cleavage product from 2,3-dihydroxybiphenyl by Pseudomonas putida. Biochem J. 1973 Aug;134(4):1063–1066. doi: 10.1042/bj1341063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Catelani D., Sorlini C., Treccani V. The metabolism of biphenyl by Pseudomonas putida. Experientia. 1971 Oct 15;27(10):1173–1174. doi: 10.1007/BF02286908. [DOI] [PubMed] [Google Scholar]
  6. Furukawa K., Tomizuka N., Kamibayashi A. Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl Environ Microbiol. 1979 Aug;38(2):301–310. doi: 10.1128/aem.38.2.301-310.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibson D. T., Roberts R. L., Wells M. C., Kobal V. M. Oxidation of biphenyl by a Beijerinckia species. Biochem Biophys Res Commun. 1973 Jan 23;50(2):211–219. doi: 10.1016/0006-291x(73)90828-0. [DOI] [PubMed] [Google Scholar]
  8. Kohler H. P., Kohler-Staub D., Focht D. D. Cometabolism of polychlorinated biphenyls: enhanced transformation of Aroclor 1254 by growing bacterial cells. Appl Environ Microbiol. 1988 Aug;54(8):1940–1945. doi: 10.1128/aem.54.8.1940-1945.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kutsuna M., Someda K., Morita K., Yamanouchi Y., Kurimoto T., Kawamura Y., Matsumura H. [Ischemic cerebral symptoms after subarachnoid hemorrhage due to aneurysmal rupture (author's transl)]. No Shinkei Geka. 1978 Jun;6(6):543–548. [PubMed] [Google Scholar]
  10. Ohta Y., Higgins I., Ribbons D. W. Metabolism of resorcinylic compounds by bacteria. Purification and properties of orcinol hydroxylase from Pseudomonas putida 01. J Biol Chem. 1975 May 25;250(10):3814–3825. [PubMed] [Google Scholar]
  11. White-Stevens R. H., Kamin H., Gibson Q. H. Studies of a flavoprotein, salicylate hydroxylse. I. Enzyme mechanism. J Biol Chem. 1972 Apr 25;247(8):2371–2381. [PubMed] [Google Scholar]
  12. White-Stevens R. H., Kamin H. Studies of a flavoprotein, salicylate hydroxylase. I. Preparation, properties, and the uncoupling of oxygen reduction from hydroxylation. J Biol Chem. 1972 Apr 25;247(8):2358–2370. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES