Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1979 Jul;66(3):377–384. doi: 10.1111/j.1476-5381.1979.tb10841.x

Drug-induced changes in the formation, storage and metabolism of tyramine in the mouse

AV Juorio
PMCID: PMC2043695  PMID: 43172

Abstract

1 The endogenous concentrations of p- and m-tyramine in the mouse striatum were determined by a mass spectrometric integrated ion current technique and concentrations were 21.3 and 6.1 ng/g, respectively.

2 The present results further confirm that the administration of antipsychotic drugs (chlorpromazine, haloperidol, spiroperidol, α-flupenthixol and (+)-butaclamol) reduces p-tyramine concentrations in the mouse striatum. In contrast, striatal m-tyramine showed a tendency to increase, although only in the cases of haloperidol and (+)-butaclamol were the differences statistically significant.

3 Administration of antipsychotic drugs to mice pretreated with tranylcypromine or clorgyline produced a significant reduction in striatal p-tyramine when compared with the concentrations obtained in mice given a monoamine oxidase inhibitor. These results suggest that antipsychotic drugs reduce striatal p-tyramine formation. The moderate increases produced by monoamine oxidase inhibitors on striatal m-tyramine were not significantly changed after the administration of an antipsychotic.

4 Drugs that reduce dopamine turnover (apomorphine, piribedil, lergotrile, α-methyl-p-tyrosine) significantly increased the concentration of striatal p-tyramine. No significant changes were observed in striatal m-tyramine concentrations after apomorphine, piribedil or lergotrile; α-methyl-p-tyrosine produced a reduction in its concentration.

5 Drugs that impair amine storage (reserpine, tetrabenazine, oxypertine) reduced striatal concentrations of p-tyramine. The m-tyramine concentrations were also reduced by reserpine or tetrabenazine.

6 It is possible that striatal tyramines act as modulators, or transmitters, and control the activity of dopaminergic neurones.

Full text

PDF
377

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldessarini R. J. Trace amines and alternative neurotransmitters in the central nervous system. Biochem Pharmacol. 1978 Mar 1;27(5):621–626. doi: 10.1016/0006-2952(78)90495-1. [DOI] [PubMed] [Google Scholar]
  2. Boulton A. A., Dyck L. E. Biosynthesis and excretion of meta and para tyramine in the rat. Life Sci. 1974 Jun 16;14(12):2497–2506. doi: 10.1016/0024-3205(74)90146-5. [DOI] [PubMed] [Google Scholar]
  3. Boulton A. A., Juorio A. V., Philips S. R., Wu P. H. Some arylalkylamines in rabbit brain. Brain Res. 1975 Oct 10;96(1):212–216. doi: 10.1016/0006-8993(75)90600-9. [DOI] [PubMed] [Google Scholar]
  4. Boulton A. A., Juorio A. V., Philips S. R., Wu P. H. The effects of reserpine and 6-hydroxydopamine on the concentrations of some arylakylamines in rat brain. Br J Pharmacol. 1977 Jan;59(1):209–214. doi: 10.1111/j.1476-5381.1977.tb06996.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boulton A. A. Letter: Amines and theories in psychiatry. Lancet. 1974 Jul 6;2(7871):52–53. doi: 10.1016/s0140-6736(74)91390-7. [DOI] [PubMed] [Google Scholar]
  6. Boulton A. A. The tyramines: functionally significant biogenic amines or metabolic accidents? Life Sci. 1978 Aug 21;23(7):659–671. doi: 10.1016/0024-3205(78)90064-4. [DOI] [PubMed] [Google Scholar]
  7. CARLSSON A., LINDQVIST M. EFFECT OF CHLORPROMAZINE OR HALOPERIDOL ON FORMATION OF 3METHOXYTYRAMINE AND NORMETANEPHRINE IN MOUSE BRAIN. Acta Pharmacol Toxicol (Copenh) 1963;20:140–144. doi: 10.1111/j.1600-0773.1963.tb01730.x. [DOI] [PubMed] [Google Scholar]
  8. Christenson J. G., Dairman W., Udenfriend S. Preparation and properties of a homogeneous aromatic L-amino acid decarboxylase from hog kidney. Arch Biochem Biophys. 1970 Nov;141(1):356–367. doi: 10.1016/0003-9861(70)90144-x. [DOI] [PubMed] [Google Scholar]
  9. Corrodi H., Fuxe K., Ungerstedt U. Evidence for a new type of dopamine receptor stimulating agent. J Pharm Pharmacol. 1971 Dec;23(12):989–991. doi: 10.1111/j.2042-7158.1971.tb09916.x. [DOI] [PubMed] [Google Scholar]
  10. Davis J. M. Critique of single amine theories: evidence of a cholinergic influence in the major mental illnesses. Res Publ Assoc Res Nerv Ment Dis. 1975;54:333–346. [PubMed] [Google Scholar]
  11. Durden D. A., Philips S. R., Boulton A. A. Identification and distribution of beta-phenylethylamine in the rat. Can J Biochem. 1973 Jul;51(7):995–1002. doi: 10.1139/o73-129. [DOI] [PubMed] [Google Scholar]
  12. Ewins A. J., Laidlaw P. P. The fate of parahydroxyphenylethylamine in the organism. J Physiol. 1910 Oct 11;41(1-2):78–87. doi: 10.1113/jphysiol.1910.sp001395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fuxe K., Grobecker H., Hökfelt T., Jonsson J., Malmfors T. Some observations on the site of action of oxypertin. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1967;256(4):450–463. doi: 10.1007/BF00536803. [DOI] [PubMed] [Google Scholar]
  14. GREEN H., ERICKSON R. W. Effect of trans-2-phenylcycloproplylamine upon norepinephrine concentration and monamine oxidase activity of rat brain. J Pharmacol Exp Ther. 1960 Jul;129:237–242. [PubMed] [Google Scholar]
  15. Guldberg H. C., Broch O. J., Jr On the mode of action of reserpine on dopamine metabolism in the rat striatum. Eur J Pharmacol. 1971 Jan;13(2):155–167. doi: 10.1016/0014-2999(71)90146-4. [DOI] [PubMed] [Google Scholar]
  16. HOLZBAUER M., VOGT M. Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat. J Neurochem. 1956 May;1(1):8–11. doi: 10.1111/j.1471-4159.1956.tb12048.x. [DOI] [PubMed] [Google Scholar]
  17. Jenner P., Pycock C., Marsden C. D. The effect of chronic administration and withdrawal of amphetamine on cerebral dopamine receptor sensitivity. Psychopharmacology (Berl) 1978 Jul 6;58(2):131–136. doi: 10.1007/BF00426895. [DOI] [PubMed] [Google Scholar]
  18. Johnston J. P. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol. 1968 Jul;17(7):1285–1297. doi: 10.1016/0006-2952(68)90066-x. [DOI] [PubMed] [Google Scholar]
  19. Juorio A. V., Danielson T. J. Effect of haloperidol and d-amphetamine on cerebral tyramine and octopamine levels. Eur J Pharmacol. 1978 Jul 1;50(1):79–82. doi: 10.1016/0014-2999(78)90256-x. [DOI] [PubMed] [Google Scholar]
  20. Juorio A. V. Effect of chlorpromazine and other anti-psychotic drugs on mouse striatal tyramines. Life Sci. 1977 May 15;20(10):1663–1667. doi: 10.1016/0024-3205(77)90340-x. [DOI] [PubMed] [Google Scholar]
  21. Juorio A. V. Effects of D-amphetamine and antipsychotic drug administration on striatal tyramine levels in the mouse. Brain Res. 1977 Apr 22;126(1):181–184. doi: 10.1016/0006-8993(77)90227-x. [DOI] [PubMed] [Google Scholar]
  22. Karoum F., Gillin J. C., Wyatt R. J. Mass fragmentographic determination of some acidic and alcoholic metabolites of biogenic amines in the rat brain. J Neurochem. 1975 Nov;25(5):653–658. doi: 10.1111/j.1471-4159.1975.tb04384.x. [DOI] [PubMed] [Google Scholar]
  23. LAVERTY R., SHARMAN D. F. MODIFICATION BY DRUGS OF THE METABOLISM OF 3,4-DIHYDROXYPHENYLETHYLAMINE, NORADRENALINE AND 5-HYDROXYTRYPTAMINE IN THE BRAIN. Br J Pharmacol Chemother. 1965 Jun;24:759–772. doi: 10.1111/j.1476-5381.1965.tb01632.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lentzen H., Philippu A. Uptake of tyramine into synaptic vesicles of the caudate nucleus. Naunyn Schmiedebergs Arch Pharmacol. 1977 Oct;300(1):25–30. doi: 10.1007/BF00505076. [DOI] [PubMed] [Google Scholar]
  25. Murphy G. F., Robinson D., Sharman D. F. The effect of tropolone on the formation of 3,4-dihydroxyphenylacetic acid and 4-hydroxy-3-methoxyphenylacetic acid in the brain of the mouse. Br J Pharmacol. 1969 May;36(1):107–115. doi: 10.1111/j.1476-5381.1969.tb08308.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Neff N. H., Yang H. Y. Another look at the monoamine oxidases and the monoamine oxidase inhibitor drugs. Life Sci. 1974 Jun 1;14(11):2061–2074. doi: 10.1016/0024-3205(74)90089-7. [DOI] [PubMed] [Google Scholar]
  27. O'Keeffe R., Sharman D. F., Vogt M. Effect of drugs used in psychoses on cerebral dopamine metabolism. Br J Pharmacol. 1970 Feb;38(2):287–304. doi: 10.1111/j.1476-5381.1970.tb08517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. PLETSCHER A., BESENDORF H., BACHTOLD H. P. Benzo[a]chinolizine, eine neue Korperklasse mit Wirkung auf den 5-hydroxytryptamin- und Noradrenalin-Stoffwechsel des Gehirns. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1958;232(3):499–506. [PubMed] [Google Scholar]
  29. Philips S. R., Davis B. A., Durden D. A., Boulton A. A. Identification and distribution of m-tyramine in the rat. Can J Biochem. 1975 Jan;53(1):65–69. doi: 10.1139/o75-010. [DOI] [PubMed] [Google Scholar]
  30. Philips S. R., Durden D. A., Boulton A. A. Identification and distribution of p-tyramine in the rat. Can J Biochem. 1974 May;52(5):366–373. doi: 10.1139/o74-055. [DOI] [PubMed] [Google Scholar]
  31. Philips S. R., Durden D. A., Boulton A. A. Identification and distribution of tryptamine in the rat. Can J Biochem. 1974 Jun;52(6):447–451. doi: 10.1139/o74-068. [DOI] [PubMed] [Google Scholar]
  32. Robinson D., Sharman D. F. The action of 2-amino-tetralin (beta-tetrahydronaphthylamine) on the metabolism of 5-hydroxytryptamine in the brain of the mouse. Br J Pharmacol Chemother. 1967 Mar;29(3):335–341. doi: 10.1111/j.1476-5381.1967.tb01965.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Roos B. E. Decrease in homovanillic acid as evidence for dopamine receptor stimulation by apomorphine in the neostriatum of the rat. J Pharm Pharmacol. 1969 Apr;21(4):263–264. doi: 10.1111/j.2042-7158.1969.tb08243.x. [DOI] [PubMed] [Google Scholar]
  34. SPECTOR S., SJOERDSMA A., UDENFRIEND S. BLOCKADE OF ENDOGENOUS NOREPINEPHRINE SYNTHESIS BY ALPHA-METHYL-TYROSINE, AN INHIBITOR OF TYROSINE HYDROXYLASE. J Pharmacol Exp Ther. 1965 Jan;147:86–95. [PubMed] [Google Scholar]
  35. Tallman J. F., Saavedra J. M., Axelrod J. Biosynthesis and metabolism of endogenous tyramine and its normal presence in sympathetic nerves. J Pharmacol Exp Ther. 1976 Oct;199(1):216–221. [PubMed] [Google Scholar]
  36. Warsh J. J., Chan P. W., Godse D. D., Coscina D. V., Stancer H. C. Gas chromatography--mass fragmentographic determination of indole-3-acetic acid in rat brain. J Neurochem. 1977 Dec;29(6):955–958. doi: 10.1111/j.1471-4159.1977.tb06499.x. [DOI] [PubMed] [Google Scholar]
  37. Wu P. H., Boulton A. A. Distribution, metabolism, and disappearance of intraventricularly injected p-tyramine in the rat. Can J Biochem. 1974 May;52(5):374–381. doi: 10.1139/o74-056. [DOI] [PubMed] [Google Scholar]
  38. Yang H. Y., Neff N. H. The monoamine oxidases of brain: selective inhibition with drugs and the consequences for the metabolism of the biogenic amines. J Pharmacol Exp Ther. 1974 Jun;189(3):733–740. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES