Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1979 Nov;67(3):345–352. doi: 10.1111/j.1476-5381.1979.tb08686.x

Ouabain receptor binding of hydroxyprogesterone derivatives.

E Chow, R S Kim, F S Labella, G Queen
PMCID: PMC2043955  PMID: 497535

Abstract

1 A specific and sensitive radioreceptor assay ahs been devised which is based on high affinity, saturable binding of 9 nM [3H]-ouabain to the total particulate fraction isolated from dog heart. Ouabain and other cardiac glycosides, including the aglycones, were about equipotent in their ability to displace [3H]-ouabain from its receptor, the IC50s ranging from 10 to 30 nM. 2 The only other substances found to compete significantly in the assay were derivatives of hydroxyprogesterone having a 17 alpha-acetate substituent: chlormadinone acetate, megestrol acetate, cyproterone acetate and medroxyprogesterone acetate, with IC50s of 2, 7.4, 9 and 21 microM, respectively. Prednisolone-3,20-bisguanyl-hydrazone, reported to have inotropic activity, gave an IC50 of 6.4 microM. Cyproterone-17 alpha-OH was less active (IC50 90 microM) than cyproterone-17 alpha-acetate. 3 A large number of peptide and protein hormones, steroid hormones and their metabolites, amines, and drugs were inactive.

Full text

PDF
345

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akera D. K., Brody T. M., Ku D., Pew C. L. Cardiac glucosides: correlations among Na+ K+-ATPase, sodium pump and contractility in the guinea pig heart. Naunyn Schmiedebergs Arch Pharmacol. 1974;285(2):185–200. doi: 10.1007/BF00501153. [DOI] [PubMed] [Google Scholar]
  2. Akera T., Brody T. M. Inotropic action of digitalis and ion transport. Life Sci. 1976 Jan 15;18(2):135–144. doi: 10.1016/0024-3205(76)90017-5. [DOI] [PubMed] [Google Scholar]
  3. Akera T., Ku D., Tobin T., Brody T. M. The complexes of ouabain with sodium- and potassium-activated adenosine triphosphatase formed with various ligands: relationship to the complex formed in the beating heart. Mol Pharmacol. 1976 Jan;12(1):101–114. [PubMed] [Google Scholar]
  4. Akera T., Larsen F. S., Brody T. M. Correlation of cardiac sodium- and potassium-activated adenosine triphosphatase activity with ouabain-induced inotropic stimulation. J Pharmacol Exp Ther. 1970 May;173(1):145–151. [PubMed] [Google Scholar]
  5. Akera T., Larsen F. S., Brody T. M. The effect of ouabain on sodium- and potassium-activated adenosine triphosphatase from the hearts of several mammalian species. J Pharmacol Exp Ther. 1969 Nov;170(1):17–26. [PubMed] [Google Scholar]
  6. Akera T. Membrane adenosinetriphosphatase: a digitalis receptor? Science. 1977 Nov 11;198(4317):569–574. doi: 10.1126/science.144320. [DOI] [PubMed] [Google Scholar]
  7. Allen J. C., Schwartz A. A possible biochemical explanation for the insensitivity of the rat to cardiac glycosides. J Pharmacol Exp Ther. 1969 Jul;168(1):42–46. [PubMed] [Google Scholar]
  8. Besch H. R., Jr, Allen J. C., Glick G., Schwartz A. Correlation between the inotropic action of ouabain and its effects on subcellular enzyme systems from canine myocardium. J Pharmacol Exp Ther. 1970 Jan;171(1):1–12. [PubMed] [Google Scholar]
  9. Brody T. M., Akera T. Studies on the cardiac glycoside inotropic receptor. Proc West Pharmacol Soc. 1975;18:8–13. [PubMed] [Google Scholar]
  10. Choi Y. R., Akera T. Kinetics studies on the interaction between ouabain and (Na+,K+)-ATPase. Biochim Biophys Acta. 1977 Apr 12;481(2):648–659. doi: 10.1016/0005-2744(77)90298-4. [DOI] [PubMed] [Google Scholar]
  11. DRANSFELD H., GREEFF K. DER EINFLUSS DES PREDNISON- UND PREDNISOLONBISGUANYLHYDRAZONS AUF DIE NA+ +K+-STIMULIERTE MEMBRAN-ATPASE DES MEERSCHWEINCHENHERZENS. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1964 Nov 25;249:425–431. doi: 10.1007/BF00247048. [DOI] [PubMed] [Google Scholar]
  12. Dransfeld H., Galetke E., Greeff K. Die Wirkung des Prednisolonbisguanylhydrazons auf die Na+ + K+-aktivierte membran-ATPase des Herz- und Skeletmuskels. Arch Int Pharmacodyn Ther. 1967 Apr;166(2):342–349. [PubMed] [Google Scholar]
  13. Erdmann E. Cell membrane receptors for cardiac glycosides in the heart. Basic Res Cardiol. 1977 Jul-Aug;72(4):315–325. doi: 10.1007/BF02023591. [DOI] [PubMed] [Google Scholar]
  14. Erdmann E., Hasse W. Quantitative aspects of ouabain binding to human erythrocyte and cardiac membranes. J Physiol. 1975 Oct;251(3):671–682. doi: 10.1113/jphysiol.1975.sp011115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Erdmann E., Schoner W. Ouabain-receptor interactions in (Na + +K + )-ATPase preparations from different tissues and species. Determination of kinetic constants and dissociation constants. Biochim Biophys Acta. 1973 May 11;307(2):386–398. doi: 10.1016/0005-2736(73)90104-1. [DOI] [PubMed] [Google Scholar]
  16. Erdmann E., Schoner W. Ouabain-receptor interactions in (Na+ + K+)-ATPase preparations. II. Effect of cations and nucleotides on rate constants and dissociation constants. Biochim Biophys Acta. 1973 Dec 22;330(3):302–315. doi: 10.1016/0005-2736(73)90235-6. [DOI] [PubMed] [Google Scholar]
  17. Erdmann E. Vergleichende Messungen der Herzglykosid-Rezeptoraffinität und der Hemmung der (Na+ + K+)-ATPase durch Digitoxin, Digoxin, Methyldigoxin, Strophanthin, Proscillaridin und Meproscillarin an isolierten menschlichen Herzmuskelzellmembranen. Arzneimittelforschung. 1978;28(3A):531–535. [PubMed] [Google Scholar]
  18. Gardner J. D., Frantz C. Effects of cations on ouabain binding by intact human erythrocytes. J Membr Biol. 1974;16(1):43–64. doi: 10.1007/BF01872406. [DOI] [PubMed] [Google Scholar]
  19. Gardner J. D., Kiino D. R. Ouabain binding and cation transport in human erythrocytes. J Clin Invest. 1973 Aug;52(8):1845–1851. doi: 10.1172/JCI107367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Greeff K., Schlieper E. Artspezifische Wirkungsunterschiede des k-Strophanthins und Prednisolonbisguanylhydrazons: untersuchungen an isolierten Vorhofpräparaten und Erythrocyten des Menschen, Meerschweinchens, Kaninchens und der Ratte. Arch Int Pharmacodyn Ther. 1967 Apr;166(2):350–361. [PubMed] [Google Scholar]
  21. Kyte J. Properties of the two polypeptides of sodium- and potassium-dependent adenosine triphosphatase. J Biol Chem. 1972 Dec 10;247(23):7642–7649. [PubMed] [Google Scholar]
  22. Matsui H., Schwartz A. Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue. Biochim Biophys Acta. 1968 Mar 25;151(3):655–663. doi: 10.1016/0005-2744(68)90013-2. [DOI] [PubMed] [Google Scholar]
  23. Murthy R. V., Kidwai A. M., Daniel E. E. Dissociation of contractile effect and binding and inhibition of Na+-K+-adenosine triphosphatase by cardiac glycosides in rabbit myometrium. J Pharmacol Exp Ther. 1974 Mar;188(3):575–581. [PubMed] [Google Scholar]
  24. Okita G. T., Richardson F., Roth-Schechter B. F. Dissociation of the positive inotropic action of digitalis from inhibition of sodium- and potassium-activated adenosine triphosphate. J Pharmacol Exp Ther. 1973 Apr;185(1):1–11. [PubMed] [Google Scholar]
  25. Peters T., Raben R. H., Wassermann O. Evidence for a dissociation between positive inotropic effect and inhibition of the Na+-K+-ATPase by ouabain, cassaine and their alkylating derivatives. Eur J Pharmacol. 1974 May;26(2):166–174. doi: 10.1016/0014-2999(74)90223-4. [DOI] [PubMed] [Google Scholar]
  26. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  27. Schwartz A., Allen J. C., Harigaya S. Possible involvement of cardiac Na+, K+-adenosine triphosphatase in the mechanism of action of cardiac glycosides. J Pharmacol Exp Ther. 1969 Jul;168(1):31–41. [PubMed] [Google Scholar]
  28. Schwartz A., Lindenmayer G. E., Allen J. C. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev. 1975 Mar;27(01):3–134. [PubMed] [Google Scholar]
  29. Schwartz A., Matsui H., Laughter A. H. Tritiated digoxin binding to (Na+ + K+)-activated adenosine triphosphatase: possible allosteric site. Science. 1968 Apr 19;160(3825):323–325. doi: 10.1126/science.160.3825.323. [DOI] [PubMed] [Google Scholar]
  30. Schütz S., Meyer K., Krätzer H. Guanylhydrazone mit einer positiv inotropen Herzwirkung. Arzneimittelforschung. 1969 Jan;19(1):69–75. [PubMed] [Google Scholar]
  31. Yamamoto S., Akera T., Brody T. M. Prednisolone-3, 20-bisguanylhydrazone: Na+, K+-ATPase inhibition and positive inotropic action. Eur J Pharmacol. 1978 May 15;49(2):121–132. doi: 10.1016/0014-2999(78)90068-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES