Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
letter
. 1980 May;69(1):59–68. doi: 10.1111/j.1476-5381.1980.tb10883.x

Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus

TV Dunwiddie, BJ Hoffer
PMCID: PMC2044173  PMID: 6247005

Abstract

1 The effects of adenosine and various derivatives were examined in the in vitro hippocampal slice preparation from rat.

2 The amplitudes of extracellularly recorded field potentials from the CA1 region were depressed by adenosine, and this effect could be antagonized by methylxanthines. Because presynaptic field potentials were unaffected by adenosine, while the field e.p.s.p. was depressed, adenosine would appear to act at a synaptic site to depress transmission.

3 Adenosine deaminase, which breaks down adenosine to inosine, increased the amplitude of synaptic responses, while hexobendine, which blocks reuptake of adenosine, had a depressant effect. This strongly suggests that the endogenous release of adenosine from the hippocampal slice preparation is sufficient to exert a tonic inhibitory influence on the amplitude of synaptic responses.

4 Cyclic adenosine 3′,5′-monophosphate (cyclic AMP) and its dibutyryl derivative had depressant effects on the amplitude of field responses which were blocked by theophylline, suggesting that they are able to act at the extracellular adenosine receptor. (-)-Isoprenaline (which raises tissue cyclic AMP levels), and the 8-p-chlorophenylthio derivative of cyclic AMP both increased the amplitude of population spike responses, and these effects were not blocked by theophylline, suggesting that the physiological effects of adenosine are not mediated via a cyclic AMP-dependent mechanism.

5 Since adenosine is not the transmitter at this CA1 pyramidal cell synapse, but is apparently present in the extracellular compartment in sufficient concentrations to affect the synaptic physiology of this region, this provides strong evidence in favour of the concept of a neuromodulatory role for adenosine in the central nervous system.

Full text

PDF
59

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander R. W., Davis J. N., Lefkowitz R. J. Direct identification and characterisation of beta-adrenergic receptors in rat brain. Nature. 1975 Dec 4;258(5534):437–440. doi: 10.1038/258437a0. [DOI] [PubMed] [Google Scholar]
  2. Alger B. E., Teyler T. J. Long-term and short-term plasticity in the CA1, CA3, and dentate regions of the rat hippocampal slice. Brain Res. 1976 Jul 16;110(3):463–480. doi: 10.1016/0006-8993(76)90858-1. [DOI] [PubMed] [Google Scholar]
  3. Andersen P., Bliss T. V., Skrede K. K. Unit analysis of hippocampal polulation spikes. Exp Brain Res. 1971;13(2):208–221. doi: 10.1007/BF00234086. [DOI] [PubMed] [Google Scholar]
  4. Andersen P., Holmqvist B., Voorhoeve P. E. Entorhinal activation of dentate granule cells. Acta Physiol Scand. 1966 Apr;66(4):448–460. doi: 10.1111/j.1748-1716.1966.tb03223.x. [DOI] [PubMed] [Google Scholar]
  5. BUTCHER R. W., SUTHERLAND E. W. Adenosine 3',5'-phosphate in biological materials. I. Purification and properties of cyclic 3',5'-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3',5'-phosphate in human urine. J Biol Chem. 1962 Apr;237:1244–1250. [PubMed] [Google Scholar]
  6. Beavo J. A., Rogers N. L., Crofford O. B., Hardman J. G., Sutherland E. W., Newman E. V. Effects of xanthine derivatives on lipolysis and on adenosine 3',5'-monophosphate phosphodiesterase activity. Mol Pharmacol. 1970 Nov;6(6):597–603. [PubMed] [Google Scholar]
  7. Bliss T. V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):331–356. doi: 10.1113/jphysiol.1973.sp010273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chapman R. A., Miller D. J. The effects of caffeine on the contraction of the frog heart. J Physiol. 1974 Nov;242(3):589–613. doi: 10.1113/jphysiol.1974.sp010725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dunwiddie T., Lynch G. Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J Physiol. 1978 Mar;276:353–367. doi: 10.1113/jphysiol.1978.sp012239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forn J., Krishna G. Effect of norepinephrine, histamine and other drugs on cyclic 3',5'-AMP formation in brain slices of various animal species. Pharmacology. 1971;5(4):193–204. doi: 10.1159/000136191. [DOI] [PubMed] [Google Scholar]
  11. Ginsborg B. L., Hirst G. D. The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J Physiol. 1972 Aug;224(3):629–645. doi: 10.1113/jphysiol.1972.sp009916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldberg A. L., Singer J. J. Evidence for a role of cyclic AMP in neuromuscular transmission. Proc Natl Acad Sci U S A. 1969 Sep;64(1):134–141. doi: 10.1073/pnas.64.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hayashi E., Mori M., Yamada S., Kumitomo M. Effects of purine compounds on cholinergic nerves. Specificity of adenosine and related compounds on acetylcholine release in electircally stimulated guinea pig ileum. Eur J Pharmacol. 1978 Apr 1;48(3):297–307. doi: 10.1016/0014-2999(78)90088-2. [DOI] [PubMed] [Google Scholar]
  14. Heller I. H., McIlwain H. Release of ( 14 C)adenine derivatives from isolated subsystems of the guinea pig brain: actions of electrical stimulation and of papaverine. Brain Res. 1973 Apr 13;53(1):105–116. doi: 10.1016/0006-8993(73)90770-1. [DOI] [PubMed] [Google Scholar]
  15. Huang M., Daly J. W. Adenosine-elicited accumulation of cyclic AMP in brain slices: potentiation by agents which inhibit uptake of adenosine. Life Sci. 1974 Feb 1;14(3):489–503. doi: 10.1016/0024-3205(74)90364-6. [DOI] [PubMed] [Google Scholar]
  16. Huang M., Shimizu H., Daly J. W. Accumulation of cyclic adenosine monophosphate in incubated slices of brain tissue. 2. Effects of depolarizing agents, membrane stabilizers, phosphodiesterase inhibitors, and adenosine analogs. J Med Chem. 1972 May;15(5):462–466. doi: 10.1021/jm00275a005. [DOI] [PubMed] [Google Scholar]
  17. Johnson P. N., Inesi G. The effect of methylxanthines and local anesthetics on fragmented sarcoplasmic reticulum. J Pharmacol Exp Ther. 1969 Oct;169(2):308–314. [PubMed] [Google Scholar]
  18. Kakiuchi S., Rall T. W. The influence of chemical agents on the accumulation of adenosine 3',5'-Phosphate in slices of rabbit cerebellum. Mol Pharmacol. 1968 Jul;4(4):367–378. [PubMed] [Google Scholar]
  19. Kostopoulos G. K., Limacher J. J., Phillis J. W. Action of various adenine derivatives on cerebellar Purkinje cells. Brain Res. 1975 Apr 25;88(1):162–165. doi: 10.1016/0006-8993(75)90966-x. [DOI] [PubMed] [Google Scholar]
  20. Kostopoulos G. K., Phillis J. W. Purinergic depression of neurons in different areas of the rat brain. Exp Neurol. 1977 Jun;55(3 Pt 1):719–724. doi: 10.1016/0014-4886(77)90296-5. [DOI] [PubMed] [Google Scholar]
  21. Kuroda Y., Saito M., Kobayashi K. Concomitant changes in cyclic AMP level and postsynaptic potentials of olfactory cortex slices induced by adenosine derivatives. Brain Res. 1976 Jun 4;109(1):196–201. doi: 10.1016/0006-8993(76)90393-0. [DOI] [PubMed] [Google Scholar]
  22. Lomo T. Patterns of activation in a monosynaptic cortical pathway: the perforant path input to the dentate area of the hippocampal formation. Exp Brain Res. 1971;12(1):18–45. [PubMed] [Google Scholar]
  23. Mah H. D., Daly J. W. Adenosine-dependent formation of cyclic AMP in brain slices. Pharmacol Res Commun. 1976 Feb;8(1):65–79. doi: 10.1016/0031-6989(76)90030-8. [DOI] [PubMed] [Google Scholar]
  24. Miller J. P., Boswell K. H., Muneyama K., Simon L. N., Robins R. K., Shuman D. A. Synthesis and biochemical studies of various 8-substituted derivatives of guanosine 3',5'-cyclic phosphate, inosine 3',5'-cyclic phosphate, and xanthosine 3',5'-cyclic phosphate. Biochemistry. 1973 Dec 18;12(26):5310–5319. doi: 10.1021/bi00750a014. [DOI] [PubMed] [Google Scholar]
  25. Minneman K. P., Hegstrand L. R., Molinoff P. B. Simultaneous determination of beta-1 and beta-2-adrenergic receptors in tissues containing both receptor subtypes. Mol Pharmacol. 1979 Jul;16(1):34–46. [PubMed] [Google Scholar]
  26. Miyamota M. D., Breckenridge B. M. A cyclic adenosine monophosphate link in the catecholamine enhancement of transmitter release at the neuromuscular junction. J Gen Physiol. 1974 May;63(5):609–624. doi: 10.1085/jgp.63.5.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Phillis J. W., Edstrom J. P. Effects of adenosine analogs on rat cerebral cortical neurons. Life Sci. 1976 Oct 1;19(7):1041–1053. doi: 10.1016/0024-3205(76)90296-4. [DOI] [PubMed] [Google Scholar]
  28. Phillis J. W., Kostopoulos G. K. Adenosine as a putative transmitter in the cerebral cortex. Studies with potentiators and antagonists. Life Sci. 1975 Oct 10;17(7):1085–1094. doi: 10.1016/0024-3205(75)90329-x. [DOI] [PubMed] [Google Scholar]
  29. Phillis J. W., Kostopoulos G. K., Limacher J. J. A potent depressant action of adenine derivatives on cerebral cortical neurones. Eur J Pharmacol. 1975 Jan;30(1):125–129. doi: 10.1016/0014-2999(75)90214-9. [DOI] [PubMed] [Google Scholar]
  30. Pull I., McIlwain H. Adenine derivatives as neurohumoral agents in the brain. The quantities liberated on excitation of superfused cerebral tissues. Biochem J. 1972 Dec;130(4):975–981. doi: 10.1042/bj1300975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sattin A., Rall T. W. The effect of adenosine and adenine nucleotides on the cyclic adenosine 3', 5'-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol. 1970 Jan;6(1):13–23. [PubMed] [Google Scholar]
  32. Scholfield C. N. Depression of evoked potentials in brain slices by adenosine compounds. Br J Pharmacol. 1978 Jun;63(2):239–244. doi: 10.1111/j.1476-5381.1978.tb09752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schubert P., Lee K., West M., Deadwyler S., Lynch G. Stimulation-dependent release of 3H-adenosine derivatives from central axon terminals to target neurones. Nature. 1976 Apr 8;260(5551):541–542. doi: 10.1038/260541a0. [DOI] [PubMed] [Google Scholar]
  34. Schultz J. Cyclic adenosine 3',5'-monophosphate in guinea-pig cerebral cortical slices: studies on the role of adenosine. J Neurochem. 1975 Jun;24(6):1237–1242. doi: 10.1111/j.1471-4159.1975.tb03904.x. [DOI] [PubMed] [Google Scholar]
  35. Shimizu H., Daly J. Formation of cyclic adenosine 3',5'-monophosphate from adenosine in brain slices. Biochim Biophys Acta. 1970 Nov 24;222(2):465–473. doi: 10.1016/0304-4165(70)90137-6. [DOI] [PubMed] [Google Scholar]
  36. Spencer H. J., Gribkoff V. K., Cotman C. W., Lynch G. S. GDEE antagonism of iontophoretic amino acid excitations in the intact hippocampus and in the hippocampal slice preparation. Brain Res. 1976 Apr 9;105(3):471–481. doi: 10.1016/0006-8993(76)90594-1. [DOI] [PubMed] [Google Scholar]
  37. Stone T. W., Taylor D. A. An electrophysiological demonstration of a synergistic interaction between norepinephrine and adenosine in the cerebral cortex. Brain Res. 1978 May 26;147(2):396–400. doi: 10.1016/0006-8993(78)90851-x. [DOI] [PubMed] [Google Scholar]
  38. Stone T. W., Taylor D. A. Microiontophoretic studies of the effects of cylic nucleotides on excitability of neurones in the rat cerebral cortex. J Physiol. 1977 Apr;266(3):523–543. doi: 10.1113/jphysiol.1977.sp011780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sun M. C., McIlwain H., Pull I. The metabolism of adenine derivatives in different parts of the brain of the rat, and their release from hypothalamic preparations on excitation. J Neurobiol. 1976 Mar;7(2):109–122. doi: 10.1002/neu.480070204. [DOI] [PubMed] [Google Scholar]
  40. Taylor D. A., Stone T. W. Neuronal responses to extracellularly applied cyclic AMP:Role of the adenosine receptor. Experientia. 1978 Apr 15;34(4):481–482. doi: 10.1007/BF01935940. [DOI] [PubMed] [Google Scholar]
  41. Weber A., Herz R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J Gen Physiol. 1968 Nov;52(5):750–759. doi: 10.1085/jgp.52.5.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wedner H. F., Hoffer B. J., Battenberg E. B., Steiner A. L., Parker C. W., Bloom F. E. A method for detecting intracellular cyclic adenosine monophosphate by immunofluorescence. J Histochem Cytochem. 1972 Apr;20(4):293–295. doi: 10.1177/20.4.293. [DOI] [PubMed] [Google Scholar]
  43. Wilson D. F. The effects of dibutyryl cyclic adenosine 3',5'-monophosphate, theophylline and aminophylline on neuromuscular transmission in the rat. J Pharmacol Exp Ther. 1974 Feb;188(2):447–452. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES