Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1980 Mar;68(3):485–497. doi: 10.1111/j.1476-5381.1980.tb14563.x

The role of cyclic nucleotides and related compounds in nerve-mediated vasodilatation in the cat submandibular gland.

C J Jones, G E Mann, L H Smaje
PMCID: PMC2044196  PMID: 6301594

Abstract

1 Intra-arterial administration of a number of purine compounds to the cat submandibular salivary gland led to an increased blood flow. The threshold concentration of the most potent vasodilators, adenosine 5'-triphosphate (ATP) and adenosine 5'-diphosphate (ADP) was about 2 mumol/l. Adenosine and guanosine 5'-triphosphate (GTP) required about 25 mumol/l, adenosine 3',5'-cyclic monophosphate (cyclic AMP) 40 mumol/l, guanosine 5'-diphosphate (GDP) 125 mumol/l and dibutyryl guanosine 3',5' cyclic monophosphate (db cyclic GMP) 400 mumol/l. Dibutyryl cyclic AMP and cyclic GMP were ineffective. 2 The cyclic nucleotide phosphodiesterase inhibitors, theophylline, papaverine, quinine and 3-isobutyl-1-methylxanthine (IBMX), all acted as vasodilators. 3 When intra-arterial infusion of theophylline or IBMX was combined with sympathetic nerve stimulation, the vasodilatation observed after the stimulus ceased was significantly potentiated. 4 Theophylline and IBMX also potentiated the vasodilatation accompanying parasympathetic nerve stimulation and this response persisted after atropine. 5 These results are discussed in relation to the possible mediators of sympathetic and parasympathetic vasodilatation in the gland.

Full text

PDF
485

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albano J., Bhoola K. D., Heap P. F., Lemon M. J. Stimulus-secretion coupling: role of cyclic AMP, cyclic GMP and calcium in mediating enzyme (kallikrein) secretion in the submandibular gland. J Physiol. 1976 Jul;258(3):631–658. doi: 10.1113/jphysiol.1976.sp011438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson R. G. Cyclic AMP and calcium ions in mechanical and metabolic responses of smooth muscles; influence of some hormones and drugs. Acta Physiol Scand Suppl. 1972;382:1–59. [PubMed] [Google Scholar]
  3. Berridge M. J. The interaction of cyclic nucleotides and calcium in the control of cellular activity. Adv Cyclic Nucleotide Res. 1975;6:1–98. [PubMed] [Google Scholar]
  4. Bhoola K. D., Morley J., Schachter M., Smaje L. H. Vasodilatation in the submaxillary gland of the cat. J Physiol. 1965 Jul;179(1):172–184. doi: 10.1113/jphysiol.1965.sp007656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bloom S. R., Bryant M. G., Polak J. M., Van Noorden S., Wharton J. Vasoactive intestinal peptide-like immunoreactivity in salivary glands of the rat [proceedings]. J Physiol. 1979 Apr;289:23P–23P. [PubMed] [Google Scholar]
  6. Bloom S. R., Polak J. M. Peptidergic versus purinergic. Lancet. 1978 Jan 14;1(8055):93–93. doi: 10.1016/s0140-6736(78)90025-9. [DOI] [PubMed] [Google Scholar]
  7. Blume A. J., Foster C. J. Mouse neuroblastoma adenylate cyclase. Adenosine and adenosine analogues as potent effectors of adenylate cyclase activity. J Biol Chem. 1975 Jul 10;250(13):5003–5008. [PubMed] [Google Scholar]
  8. Burnstock G. Purinergic nerves. Pharmacol Rev. 1972 Sep;24(3):509–581. [PubMed] [Google Scholar]
  9. Butcher F. R., Goldman J. A., Nemerovski Effect of adrenergic agents on alpha-amylase release and adenosine 3',5'-monophosphate accumulation in rat parotid tissue slices. Biochim Biophys Acta. 1975 May 5;392(1):82–94. doi: 10.1016/0304-4165(75)90168-3. [DOI] [PubMed] [Google Scholar]
  10. Bär H. P. Cyclic nucleotides and smooth muscle. Adv Cyclic Nucleotide Res. 1974;4(0):195–237. [PubMed] [Google Scholar]
  11. DAVY M. J., DAVIES R. F., REINERT H., SCHOLFIELD P. C. EFFECTS OF ADRENERGIC NEURONE-BLOCKING AGENTS ON THE SUBMAXILLARY GLAND OF THE CAT. Nature. 1965 Feb 13;205:673–675. doi: 10.1038/205673a0. [DOI] [PubMed] [Google Scholar]
  12. Darke A. C., Smaje L. H. Dependence of functional vasodilatation in the cat submaxillary gland upon stimulation frequency. J Physiol. 1972 Oct;226(1):191–203. doi: 10.1113/jphysiol.1972.sp009980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Durham J. P., Butcher F. R., Muir T. C., Templeton D. Effect of electrical stimulation of the autonomic nerve supply on the concentration of guanosine 3':5'-cyclic monophosphate and the activity of guanylate cyclase in rat salivary glands and their relationship to the induction of growth [proceedings]. Biochem Soc Trans. 1977;5(4):1081–1083. doi: 10.1042/bst0051081. [DOI] [PubMed] [Google Scholar]
  14. Ferreira S. H., Smaje L. H. Bradykinin and functional vasodilatation in the salivary gland. Br J Pharmacol. 1976 Oct;58(2):201–209. doi: 10.1111/j.1476-5381.1976.tb10397.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frandsen E. K., Krishna G. A., Said S. I. Vasoactive intestinal polypeptide promotes cyclic adenosine 3',5'-monophosphate accumulation in guinea-pig trachea. Br J Pharmacol. 1978 Mar;62(3):367–369. doi: 10.1111/j.1476-5381.1978.tb08471.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fraser P. A., Smaje L. H. The organization of the salivary gland microcirculation. J Physiol. 1977 Oct;272(1):121–136. doi: 10.1113/jphysiol.1977.sp012037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gautvik K., Kriz M., Lund-Larsen K., Waaler B. A. Sympathetic vasodilatation, kallikrein release and adrenergic receptors in the cat submandibular salivary gland. Acta Physiol Scand. 1974 Feb;90(2):438–444. doi: 10.1111/j.1748-1716.1974.tb05606.x. [DOI] [PubMed] [Google Scholar]
  18. Gautvik K. Parasympathetic neuro-effector transmission and functional vasodilatation in the submandibular salivary gland of cats. Acta Physiol Scand. 1970 Jun;79(2):204–215. doi: 10.1111/j.1748-1716.1970.tb04720.x. [DOI] [PubMed] [Google Scholar]
  19. Gautvik K. The interaction of two different vasodilator mechanisms in the chorda-tympani activated submandibular salivary gland. Acta Physiol Scand. 1970 Jun;79(2):188–203. doi: 10.1111/j.1748-1716.1970.tb04719.x. [DOI] [PubMed] [Google Scholar]
  20. HILTON S. M., LEWIS G. P. The cause of the vasodilatation accompanying activity in the submandibular salivary gland. J Physiol. 1955 May 27;128(2):235–248. doi: 10.1113/jphysiol.1955.sp005302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. HILTON S. M., LEWIS G. P. The mechanism of the functional hyperaemia in the submandibular salivary gland. J Physiol. 1955 Aug 29;129(2):253–271. doi: 10.1113/jphysiol.1955.sp005351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. HILTON S. M., LEWIS G. P. The relationship between glandular activity, bradykinin formation and functional vasodilatation in the submandibular salivary gland. J Physiol. 1956 Nov 28;134(2):471–483. doi: 10.1113/jphysiol.1956.sp005658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hartle D. K. Cyclic nucleotide levels during carbachol-induced smooth muscle contractions. J Cyclic Nucleotide Res. 1976;2(3):179–188. [PubMed] [Google Scholar]
  24. Hopkins S. V. The action of ATP in the guinea-pig heart. Biochem Pharmacol. 1973 Feb 1;22(3):335–339. doi: 10.1016/0006-2952(73)90414-0. [DOI] [PubMed] [Google Scholar]
  25. Hopkins S. V. The potentiation of the action of adenosine on the guinea-pig heart. Biochem Pharmacol. 1973 Feb 1;22(3):341–348. doi: 10.1016/0006-2952(73)90415-2. [DOI] [PubMed] [Google Scholar]
  26. Jenkinson D. H., Koller K. Interactions between the effects of alpha- and beta-adrenoceptor agonists and adenine nucleotides on the membrane potential of cells in guinea-pig liver slices. Br J Pharmacol. 1977 Jan;59(1):163–175. doi: 10.1111/j.1476-5381.1977.tb06991.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jones C. J., Mann G. E. A possible role for adenosine 3':5'-cyclic monophosphate in nerve-mediated vasodilatation. Biochem Soc Trans. 1977;5(2):428–430. doi: 10.1042/bst0050428. [DOI] [PubMed] [Google Scholar]
  28. Kolassa N., Pfleger K., Rummel W. Specificity of adenosine uptake into the heart and inhibition by dipyridamole. Eur J Pharmacol. 1970 Mar;9(3):265–268. doi: 10.1016/0014-2999(70)90221-9. [DOI] [PubMed] [Google Scholar]
  29. Morley J., Schachter M., Smaje L. H. Vasodilatation in the submaxillary gland of the rabbit. J Physiol. 1966 Dec;187(3):595–602. doi: 10.1113/jphysiol.1966.sp008111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schachter M., Beilenson S. Mediator of vasodilatation in the submaxillary gland. Fed Proc. 1968 Jan-Feb;27(1):73–75. [PubMed] [Google Scholar]
  31. Skinner N. S., Jr, Webster M. E. Submaxillary gland blood flow: the role of kinins and beta-adrenergic receptors. Fed Proc. 1968 Jan-Feb;27(1):76–79. [PubMed] [Google Scholar]
  32. Thulin A. Blood flow changes in the submaxillary gland of the rat on parasympathetic and sympathetic nerve stimulation. Acta Physiol Scand. 1976 Mar;97(1):104–109. doi: 10.1111/j.1748-1716.1976.tb10240.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES