Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Dec;54(12):3043–3052. doi: 10.1128/aem.54.12.3043-3052.1988

Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains.

M M Häggblom 1, L J Nohynek 1, M S Salkinoja-Salonen 1
PMCID: PMC204425  PMID: 3223768

Abstract

Three polychlorophenol-degrading Rhodococcus and Mycobacterium strains were isolated independently from soil contaminated with chlorophenol wood preservative and from sludge of a wastewater treatment facility of a kraft pulp bleaching plant. Rhodococcus sp. strain CG-1 and Mycobacterium sp. strain CG-2, isolated from tetrachloroguaiacol enrichment, and Rhodococcus sp. strain CP-2, isolated from pentachlorophenol enrichment, mineralized pentachlorophenol and degraded several other polychlorinated phenols, guaiacols (2-methoxyphenols), and syringols (2,6-dimethoxyphenols) at micromolar concentrations and were sensitive to the toxic effects of pentachlorophenol. All three strains initiated degradation of the chlorophenols by para-hydroxylation, producing chlorinated para-hydroquinones, which were then further degraded. Parallel to degradation, strains CG-1, CG-2, and CP-2 also O-methylated nearly all chlorinated phenols, guaiacols, syringols, and hydroquinones. O-methylation of chlorophenols was a slow reaction compared with degradation. The preferred substrates of the O-methylating enzyme(s) were those with the hydroxyl group flanked by two chlorine substituents. O-methylation was constitutively expressed, whereas degradation of chlorinated phenolic compounds was inducible.

Full text

PDF
3043

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allard A. S., Remberger M., Neilson A. H. Bacterial O-methylation of halogen-substituted phenols. Appl Environ Microbiol. 1987 Apr;53(4):839–845. doi: 10.1128/aem.53.4.839-845.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allard A. S., Remberger M., Neilson A. H. Bacterial o-methylation of chloroguaiacols: effect of substrate concentration, cell density, and growth conditions. Appl Environ Microbiol. 1985 Feb;49(2):279–288. doi: 10.1128/aem.49.2.279-288.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Apajalahti J. H., Salkinoja-Salonen M. S. Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J Bacteriol. 1987 Nov;169(11):5125–5130. doi: 10.1128/jb.169.11.5125-5130.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Apajalahti J. H., Salkinoja-Salonen M. S. Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J Bacteriol. 1987 Feb;169(2):675–681. doi: 10.1128/jb.169.2.675-681.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
  6. Chu J. P., Kirsch E. J. Metabolism of pentachlorophenol by an axenic bacterial culture. Appl Microbiol. 1972 May;23(5):1033–1035. doi: 10.1128/am.23.5.1033-1035.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cserjesi A. J., Johnson E. L. Methylation of pentachlorophenol by Trichoderma virgatum. Can J Microbiol. 1972 Jan;18(1):45–49. doi: 10.1139/m72-007. [DOI] [PubMed] [Google Scholar]
  8. Gee J. M., Peel J. L. Metabolism of 2,3,4,6-tetrachlorophenol by micro-organisms from broiler house litter. J Gen Microbiol. 1974 Dec;85(2):237–243. doi: 10.1099/00221287-85-2-237. [DOI] [PubMed] [Google Scholar]
  9. Häggblom M. M., Apajalahti J. H., Salkinoja-Salonen M. S. Hydroxylation and dechlorination of chlorinated guaiacols and syringols by Rhodococcus chlorophenolicus. Appl Environ Microbiol. 1988 Mar;54(3):683–687. doi: 10.1128/aem.54.3.683-687.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Häggblom M. M., Apajalahti J. H., Salkinoja-Salonen M. S. O-Methylation of Chlorinated para-Hydroquinones by Rhodococcus chlorophenolicus. Appl Environ Microbiol. 1988 Jul;54(7):1818–1824. doi: 10.1128/aem.54.7.1818-1824.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Knackmuss H. J., Hellwig M. Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B 13. Arch Microbiol. 1978 Apr 27;117(1):1–7. doi: 10.1007/BF00689343. [DOI] [PubMed] [Google Scholar]
  12. Knackmuss H. J. Xenobiotic degradation in industrial sewage: haloaromatics as target substrates. Biochem Soc Symp. 1983;48:173–190. [PubMed] [Google Scholar]
  13. Mikesell M. D., Boyd S. A. Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl Environ Microbiol. 1986 Oct;52(4):861–865. doi: 10.1128/aem.52.4.861-865.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Neilson A. H., Allard A. S., Hynning P. A., Remberger M., Landner L. Bacterial methylation of chlorinated phenols and guaiacols: formation of veratroles from guaiacols and high-molecular-weight chlorinated lignin. Appl Environ Microbiol. 1983 Mar;45(3):774–783. doi: 10.1128/aem.45.3.774-783.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Neilson A. H., Lindgren C., Hynning P. A., Remberger M. Methylation of halogenated phenols and thiophenols by cell extracts of gram-positive and gram-negative bacteria. Appl Environ Microbiol. 1988 Feb;54(2):524–530. doi: 10.1128/aem.54.2.524-530.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SUNDMAN V. A DESCRIPTION OF SOME LIGNANOLYTIC SOIL BACTERIA AND THEIR ABILITY TO OXIDIZE SIMPLE PHENOLIC COMPOUNDS. J Gen Microbiol. 1964 Aug;36:171–183. doi: 10.1099/00221287-36-2-171. [DOI] [PubMed] [Google Scholar]
  17. Saber D. L., Crawford R. L. Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Environ Microbiol. 1985 Dec;50(6):1512–1518. doi: 10.1128/aem.50.6.1512-1518.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stanlake G. J., Finn R. K. Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl Environ Microbiol. 1982 Dec;44(6):1421–1427. doi: 10.1128/aem.44.6.1421-1427.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Steiert J. G., Crawford R. L. Catabolism of pentachlorophenol by a Flavobacterium sp. Biochem Biophys Res Commun. 1986 Dec 15;141(2):825–830. doi: 10.1016/s0006-291x(86)80247-9. [DOI] [PubMed] [Google Scholar]
  20. Steiert J. G., Pignatello J. J., Crawford R. L. Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl Environ Microbiol. 1987 May;53(5):907–910. doi: 10.1128/aem.53.5.907-910.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Suzuki T. Metabolism of pentachlorophenol by a soil microbe. J Environ Sci Health B. 1977;12(2):113–127. doi: 10.1080/03601237709372057. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES