Abstract
A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- CHRISTENSEN M. D., PEDERSON C. S. Factors affecting diacetyl production by lactic acid bacteria. Appl Microbiol. 1958 Sep;6(5):319–322. doi: 10.1128/am.6.5.319-322.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GASSFR E. IDENTIFICATION DES LACTOBACILLUS F'ECAUX. Ann Inst Pasteur (Paris) 1964 May;106:778–796. [PubMed] [Google Scholar]
- London J. The ecology and taxonomic status of the lactobacilli. Annu Rev Microbiol. 1976;30:279–301. doi: 10.1146/annurev.mi.30.100176.001431. [DOI] [PubMed] [Google Scholar]
- Radler F., Yannissis C. Weinsäureabbau bei Milchsäurebakterien. Arch Mikrobiol. 1972;82(3):219–239. [PubMed] [Google Scholar]