Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Dec;54(12):3086–3091. doi: 10.1128/aem.54.12.3086-3091.1988

Laccase-mediated detoxification of phenolic compounds.

J M Bollag 1, K L Shuttleworth 1, D H Anderson 1
PMCID: PMC204431  PMID: 3223771

Abstract

The ability of a polyphenoloxidase, the laccase of the fungus Rhizoctonia praticola, to detoxify phenolic pollutants was examined. The growth of the fungus could be inhibited by phenolic compounds, and the effective concentration was dependent on the substituents of the phenol. A toxic amount of a phenolic compound was added to a fungal growth medium in the presence or absence of a naturally occurring phenol, and half of the replicates also received laccase. The medium was then inoculated with R. praticola, and the levels of phenols in the medium were monitored by high-performance liquid chromatography analysis. The addition of the laccase reversed the inhibitory effect of 2,6-xylenol, 4-chloro-2-methylphenol, and p-cresol. Other compounds, e.g., o-cresol and 2,4-dichlorophenol, were detoxified only when laccase was used in conjunction with a natural phenol such as syringic acid. The toxicity of p-chlorophenol and 2,4,5-trichlorophenol could not be overcome by any additions. The ability of the laccase to alter the toxicity of the phenols appeared to be related to the capacity of the enzyme to decrease the levels of the parent compound by transformation or cross-coupling with another phenol.

Full text

PDF
3086

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baird R. B., Carmona L. G., Jenkins R. L. The direct-injection GLC analysis of xylenols in industrial wastewaters. Bull Environ Contam Toxicol. 1977 Jun;17(6):764–767. doi: 10.1007/BF01685967. [DOI] [PubMed] [Google Scholar]
  2. Bollag J. M., Sjoblad R. D., Liu S. Y. Characterization of an enzyme from Rhizoctonia praticola which polymerizes phenolic compounds. Can J Microbiol. 1979 Feb;25(2):229–233. doi: 10.1139/m79-035. [DOI] [PubMed] [Google Scholar]
  3. Ogram A. V., Jessup R. E., Ou L. T., Rao P. S. Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy) acetic acid in soils. Appl Environ Microbiol. 1985 Mar;49(3):582–587. doi: 10.1128/aem.49.3.582-587.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ruckdeschel G., Renner G. Effects of pentachlorophenol and some of its known and possible metabolites on fungi. Appl Environ Microbiol. 1986 Jun;51(6):1370–1372. doi: 10.1128/aem.51.6.1370-1372.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES