Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1980 Oct;70(2):229–240. doi: 10.1111/j.1476-5381.1980.tb07928.x

Evidence for multiple sources of calcium for activation of the contractile mechanism of guinea-pig taenia coli on stimulation with carbachol.

A F Brading, P Sneddon
PMCID: PMC2044321  PMID: 7426833

Abstract

1 The evidence presented suggests there are three sources of Ca available for contraction of the smooth muscle of the guinea-pig taenia coli on stimulation with carbachol; the inward Ca current of the spike, a second voltage-dependent Ca channel and an internal Ca store. 2 The initial increment of tension in response to carbachol is thought to be due to an increase in spike frequency which is probably the main source of Ca at low carbachol concentrations (< 10(-6) M). 3 The maintained tension in the continuous presence of high concentrations of carbachol seems to involve continuous influx of membrane-bound Ca by a potential-dependent mechanism which can be very quickly deactivated, resulting in rapid relaxation. This mechanism can be blocked by 2 X 10(-7) M methoxyverapamil (D600). 4 An internal Ca store can be released by high concentrations of carbachol (< 10(-6) M) and is probably responsible for the initial peak of tension, of about 5 min duration seen on continuous application of high concentrations of carbachol and for the tension increase in response to carbachol in tissues depolarized in high-K. 5 Investigation of the properties of the store indicates that it; (i) is very rapidly filled by application of high extracellular Ca; (ii) empties after a few minutes in zero-Ca EGTA Krebs solution; (iii) can be refilled in depolarized tissues in the presence of low concentrations of D600 and Mn, but does not refill during application of carbachol at concentrations greater than 10(-6) M; (iv) contains enough Ca for one near-maximal contraction and once emptied can assist relaxation by Ca re-uptake.

Full text

PDF
229

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BULBRING E. Electrical activity in intestinal smooth muscle. Physiol Rev Suppl. 1962 Jul;5:160–178. [PubMed] [Google Scholar]
  2. Bell P. M. Proceedings: A programming device for bio-assay. J Physiol. 1973 Oct;234(2):7P–8P. [PubMed] [Google Scholar]
  3. Bolton T. B. Effects of stimulating the acetylcholine receptor on the current-voltage relationships of the smooth muscle membrane studied by voltage clamp of potential recorded by micro-electrode. J Physiol. 1975 Aug;250(1):175–202. doi: 10.1113/jphysiol.1975.sp011048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bolton T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979 Jul;59(3):606–718. doi: 10.1152/physrev.1979.59.3.606. [DOI] [PubMed] [Google Scholar]
  5. Bolton T. B. The depolarizing action of acetylcholine or carbachol in intestinal smooth muscle. J Physiol. 1972 Feb;220(3):647–671. doi: 10.1113/jphysiol.1972.sp009728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brading A., Bülbring E., Tomita T. The effect of sodium and calcium on the action potential of the smooth muscle of the guinea-pig taenia coli. J Physiol. 1969 Feb;200(3):637–654. doi: 10.1113/jphysiol.1969.sp008713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Casteels R., Kitamura K., Kuriyama H., Suzuki H. Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery. J Physiol. 1977 Sep;271(1):63–79. doi: 10.1113/jphysiol.1977.sp011990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Casteels R., Raeymaekers L. The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea-pig taenia coli. J Physiol. 1979 Sep;294:51–68. doi: 10.1113/jphysiol.1979.sp012914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. EDMAN K. A., SCHILD H. O. CALCIUM AND THE STIMULANT AND INHIBITORY EFFECTS OF ADRENALINE IN DEPOLARIZED SMOOTH MUSCLE. J Physiol. 1963 Nov;169:404–411. doi: 10.1113/jphysiol.1963.sp007265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. EDMAN K. A., SCHILD H. O. The need for calcium in the contractile responses induced by acetylcholine and potassium in the rat uterus. J Physiol. 1962 May;161:424–441. doi: 10.1113/jphysiol.1962.sp006897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. EVANS D. H., SCHILD H. O. Mechanism of contraction of smooth muscle by drugs. Nature. 1957 Aug 17;180(4581):341–342. doi: 10.1038/180341c0. [DOI] [PubMed] [Google Scholar]
  12. EVANS D. H., SCHILD H. O., THESLEFF S. Effects of drugs on depolarized plain muscle. J Physiol. 1958 Oct 31;143(3):474–485. doi: 10.1113/jphysiol.1958.sp006072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. FILO R. S., BOHR D. F., RUEGG J. C. GLYCERINATED SKELETAL AND SMOOTH MUSCLE: CALCIUM AND MAGNESIUM DEPENDENCE. Science. 1965 Mar 26;147(3665):1581–1583. doi: 10.1126/science.147.3665.1581. [DOI] [PubMed] [Google Scholar]
  14. GOODFORD P. J. THE LOSS OF RADIOACTIVE 45-CALCIUM FROM THE SMOOTH MUSCLE OF THE GUINEA-PIG TAENIA COLI. J Physiol. 1965 Jan;176:180–190. doi: 10.1113/jphysiol.1965.sp007543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gabella G. Quantitative morphological study of smooth muscle cells of the guinea-pig taenia coli. Cell Tissue Res. 1976 Jul 26;170(2):161–186. doi: 10.1007/BF00224297. [DOI] [PubMed] [Google Scholar]
  16. Hudgins P. M., Weiss G. B. Differential effects of calcium removal upon vascular smooth muscle contraction induced by norepinephrine, histamine and potassium. J Pharmacol Exp Ther. 1968 Jan;159(1):91–97. [PubMed] [Google Scholar]
  17. Hurwitz L., Suria A. The link between agonist action and response in smooth muscle. Annu Rev Pharmacol. 1971;11:303–326. doi: 10.1146/annurev.pa.11.040171.001511. [DOI] [PubMed] [Google Scholar]
  18. Inomata H., Kao C. Y. Ionic currents in the guinea-pig taenia coli. J Physiol. 1976 Feb;255(2):347–378. doi: 10.1113/jphysiol.1976.sp011284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kuriyama H., Suzuki H. The effects of acetylcholine on the membrane and contractile properties of smooth muscle cells of the rabbit superior mesenteric artery. Br J Pharmacol. 1978 Dec;64(4):493–501. doi: 10.1111/j.1476-5381.1978.tb17310.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oashi H., Takewaki T., Okada T. Calcium and the contractile effect of carbachol in the depolarized guinea-pig taenia caecum. Jpn J Pharmacol. 1974 Aug;24(4):601–611. doi: 10.1254/jjp.24.601. [DOI] [PubMed] [Google Scholar]
  21. SU C., BEVAN J. A., URSILLO R. C. ELECTRICAL QUIESCENCE OF PULMONARY ARTERY SMOOTH MUSCLE DURING SYMPATHOMIMETIC STIMULATION. Circ Res. 1964 Jul;15:26–27. doi: 10.1161/01.res.15.1.20. [DOI] [PubMed] [Google Scholar]
  22. Tomita T. Electrophysiology of mammalian smooth muscle. Prog Biophys Mol Biol. 1975;30(2-3):185–203. doi: 10.1016/0079-6107(76)90009-2. [DOI] [PubMed] [Google Scholar]
  23. Webb R. C., Bohr D. F. Mechanism of membrane stabilization by calcium in vascular smooth muscle. Am J Physiol. 1978 Nov;235(5):C227–C232. doi: 10.1152/ajpcell.1978.235.5.C227. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES