Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1980 Dec;70(4):609–615. doi: 10.1111/j.1476-5381.1980.tb09779.x

gamma-Aminobutyric acid agonists: an in vitro comparison between depression of spinal synaptic activity and depolarization of spinal root fibres in the rat.

R D Allan, R H Evans, G A Johnston
PMCID: PMC2044373  PMID: 6258682

Abstract

1 Relative molar potencies, of a range of gamma-aminobutyrate (GABA)-related agonists, for depolarization of isolated spinal roots have been compared with their potencies for depression of spontaneous synaptic activity, recorded in ventral roots of hemisected spinal cord preparations from 3 to 9-day-old rats. Both effects were sensitive to antagonism by bicuculline. 2 The depolarizing potencies of the series were not parallelled by their depressant potencies. This disparity was shown most strongly by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) which was 20 times stronger than GABA in depolarizing root fibres and 20 times stronger than GABA in its depressant action and by (+)-cis-3-aminocyclopentane-carboxylic acid (17 times weaker than GABA on root fibres and 42 times stronger than GABA as a depressant). 3 The effect of uptake on these relative potencies is discussed and it is concluded that fibre depolarization and depression are probably mediated by different types of bicuculline-sensitive receptor. 4 The depolarizing potencies of the agonists showed a strong correlation with previously reported data for displacement of labelled GABA from in vitro rat brain membrane preparations (correlation coefficient 0.90, P less than 0.001). However, the relative depressant potencies showed no such correlation with binding data (correlation coefficient 0.50, P less than 0.05).

Full text

PDF
609

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alger B. E., Nicoll R. A. GABA-mediated biphasic inhibitory responses in hippocampus. Nature. 1979 Sep 27;281(5729):315–317. doi: 10.1038/281315a0. [DOI] [PubMed] [Google Scholar]
  2. Andrews P. R., Johnston G. A. GABA agonists and antagonists. Biochem Pharmacol. 1979 Sep 15;28(18):2697–2702. doi: 10.1016/0006-2952(79)90549-5. [DOI] [PubMed] [Google Scholar]
  3. Bowery N. G., Brown D. A. Depolarizing actions of gamma-aminobutyric acid and related compounds on rat superior cervical ganglia in vitro. Br J Pharmacol. 1974 Feb;50(2):205–218. doi: 10.1111/j.1476-5381.1974.tb08563.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bowery N. G., Collins J. F., Hudson A. L., Neal M. J. Isoguvacine, isonipecotic acid, muscimol and N-methyl isoguvacine on the GABA receptor in rat sympathetic ganglia. Experientia. 1978 Sep 15;34(9):1193–1195. doi: 10.1007/BF01922953. [DOI] [PubMed] [Google Scholar]
  5. Brown D. A., Marsh S. Axonal GABA-receptors in mammalian peripheral nerve trunks. Brain Res. 1978 Nov 3;156(1):187–191. doi: 10.1016/0006-8993(78)90098-7. [DOI] [PubMed] [Google Scholar]
  6. Curtis D. R., Hösli L., Johnston G. A. A pharmacological study of the depression of spinal neurones by glycine and related amino acids. Exp Brain Res. 1968;6(1):1–18. doi: 10.1007/BF00235443. [DOI] [PubMed] [Google Scholar]
  7. Curtis D. R., Hösli L., Johnston G. A., Johnston I. H. The hyperpolarization of spinal motoneurones by glycine and related amino acids. Exp Brain Res. 1968;5(3):235–258. doi: 10.1007/BF00238666. [DOI] [PubMed] [Google Scholar]
  8. Curtis D. R., Lodge D., Brand S. J. GABA and spinal afferent terminal excitability in the cat. Brain Res. 1977 Jul 15;130(2):360–363. doi: 10.1016/0006-8993(77)90283-9. [DOI] [PubMed] [Google Scholar]
  9. De Groat W. C., Lalley P. M., Saum W. R. Depolarization of dorsal root ganglia in the cat by GABA and related amino acids: antagonism by picrotoxin and bicuculline. Brain Res. 1972 Sep 15;44(1):273–277. doi: 10.1016/0006-8993(72)90383-6. [DOI] [PubMed] [Google Scholar]
  10. Evans R. H. Evidence supporting the indirect depolarization of primary afferent terminals in the frog by excitatory amino acids. J Physiol. 1980 Jan;298:25–35. doi: 10.1113/jphysiol.1980.sp013064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Evans R. H. Potentiation of the effects of GABA by pentobarbitone. Brain Res. 1979 Jul 27;171(1):113–120. doi: 10.1016/0006-8993(79)90736-4. [DOI] [PubMed] [Google Scholar]
  12. Evans R. H. The effects of amino acids and antagonists on the isolated hemisected spinal cord of the immature rat. Br J Pharmacol. 1978 Feb;62(2):171–176. doi: 10.1111/j.1476-5381.1978.tb08442.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans R. H., Watkins J. C. Specific antagonism of excitant amino acids in the isolated spinal cord of the neonatal rat. Eur J Pharmacol. 1978 Jul 15;50(2):123–129. doi: 10.1016/0014-2999(78)90007-9. [DOI] [PubMed] [Google Scholar]
  14. Feltz P., Rasminsky M. A model for the mode of action of GABA on primary afferent terminals: depolarizing effects of GABA applied iontophoretically to neurones of mammalian dorsal root ganglia. Neuropharmacology. 1974 Jun;13(6):553–563. doi: 10.1016/0028-3908(74)90145-2. [DOI] [PubMed] [Google Scholar]
  15. Gallagher J. P., Higashi H., Nishi S. Characterization and ionic basis of GABA-induced depolarizations recorded in vitro from cat primary afferent neurones. J Physiol. 1978 Feb;275:263–282. doi: 10.1113/jphysiol.1978.sp012189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Greenlee D. V., Van Ness P. C., Olsen R. W. Gamma-aminobutyric acid binding in mammalian brain: receptor-like specificity of sodium-independent sites. J Neurochem. 1978 Oct;31(4):933–938. doi: 10.1111/j.1471-4159.1978.tb00130.x. [DOI] [PubMed] [Google Scholar]
  17. Iversen L. L., Johnston G. A. GABA uptake in rat central nervous system: comparison of uptake in slices and homogenates and the effects of some inhibitors. J Neurochem. 1971 Oct;18(10):1939–1950. doi: 10.1111/j.1471-4159.1971.tb09600.x. [DOI] [PubMed] [Google Scholar]
  18. Johnston G. A., Curtis D. R., Beart P. M., Game C. J., McCulloch R. M., Twitchin B. Cis- and trans-4-aminocrotonic acid as GABA analogues of restricted conformation. J Neurochem. 1975 Jan;24(1):157–160. doi: 10.1111/j.1471-4159.1975.tb07642.x. [DOI] [PubMed] [Google Scholar]
  19. Krogsgaard-Larsen P., Falch E., Schousboe A., Curtis D. R., Lodge D. Piperidine-4-sulphonic acid, a new specific GABA agonist. J Neurochem. 1980 Mar;34(3):756–759. doi: 10.1111/j.1471-4159.1980.tb11211.x. [DOI] [PubMed] [Google Scholar]
  20. Krogsgaard-Larsen P., Hjeds H., Curtis D. R., Lodge D., Johnston G. A. Dihydromuscimol, thiomuscimol and related heterocyclic compounds as GABA analogues. J Neurochem. 1979 Jun;32(6):1717–1724. doi: 10.1111/j.1471-4159.1979.tb02284.x. [DOI] [PubMed] [Google Scholar]
  21. Krogsgaard-Larsen P., Johnston G. A. Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J Neurochem. 1975 Dec;25(6):797–802. doi: 10.1111/j.1471-4159.1975.tb04410.x. [DOI] [PubMed] [Google Scholar]
  22. Krogsgaard-Larsen P., Johnston G. A. Structure-activity studies on the inhibition of GABA binding to rat brain membranes by muscimol and related compounds. J Neurochem. 1978 Jun;30(6):1377–1382. doi: 10.1111/j.1471-4159.1978.tb10469.x. [DOI] [PubMed] [Google Scholar]
  23. Minchin M. C. Uptake of [14C]nipecotic acid into rat dorsal root ganglia. J Neurochem. 1979 May;32(5):1519–1524. doi: 10.1111/j.1471-4159.1979.tb11093.x. [DOI] [PubMed] [Google Scholar]
  24. Obata K., Ito M., Ochi R., Sato N. Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of gamma-aminobutyric acid on deiters NEURONES. Exp Brain Res. 1967;4(1):43–57. doi: 10.1007/BF00235216. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES