Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1983 Jan;78(1):89–96. doi: 10.1111/j.1476-5381.1983.tb09367.x

The effect of chronic antidepressant administration on β-adrenoceptor function of the rat pineal

PJ Cowen, Sheila Fraser, DG Grahame-Smith, AR Green, Clare Stanford
PMCID: PMC2044787  PMID: 6130811

Abstract

1 The β-adrenoceptor agonist, isoprenaline (1.5-3.0 mg kg-1 intravenously), produced a dose-related increase in rat pineal melatonin content. This increase was prevented by pretreatment with the selective β1-adrenoceptor antagonist, atenolol (2 mg kg-1), but not by the β2-adrenoceptor antagonist, butoxamine (2 mg kg-1). The β2-adrenoceptor agonist, terbutaline (5.0 mg kg-1), produced a moderate increase in pineal melatonin content.

2 Repeated daily administration of desmethylimipramine (10 mg kg-1 for 10 days) and maprotiline (10 mg kg-1 for 10 days), antidepressants predominantly inhibiting noradrenaline (NA) uptake, reduced the isoprenaline-induced increase in pineal melatonin content. Amitriptyline (20 mg kg-1 for 14 days), a drug which inhibits both NA and 5-hydroxytryptamine (5-HT) uptake, had a similar effect. The β-adrenoceptor agonist, clenbuterol (5 mg kg-1 for 14 days), also attenuated the increase in pineal melatonin produced by isoprenaline.

3 In contrast, chronic administration of the selective 5-HT uptake inhibitor, fluoxetine (10 mg kg-1 for 10 days), or the antidepressants, iprindole and mianserin (both 20 mg kg-1 for 14 days), which do not inhibit monoamine uptake, failed to reduce the increase in pineal melatonin following isoprenaline. Repeated electroconvulsive shock was similarly without effect.

4 Ten hours after the final dose of desmethylimipramine (10 mg kg-1) once daily for 10 days there was no change in the usual dark phase increase in pineal melatonin.

5 The data suggest that repeated administration of certain antidepressant drugs results in reduced pineal β-adrenoceptor sensitivity. However the lack of change in the dark phase increase in pineal melatonin following repeated desmethylimipramine, implies that the reduced ß-adrenoceptor sensitivity may be part of an adaptive process which maintains normal pineal function. Therefore the decrease in β-adrenoceptor number in the brain reported after chronic antidepressant administration may not be associated with a change in overall synaptic function.

Full text

PDF
89

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arendt J., Ho A. K., Laud C., Marston A., Nohria V., Smith J. A., Symons A. M. Differential effect of benserazide (Ro4-4602) on the concentration of indoleamines in rat pineal and hypothalamus. Br J Pharmacol. 1981 Feb;72(2):257–262. doi: 10.1111/j.1476-5381.1981.tb09122.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arendt J., Paunier L., Sizonenko P. C. Melatonin radioimmunoassay. J Clin Endocrinol Metab. 1975 Feb;40(2):347–350. doi: 10.1210/jcem-40-2-347. [DOI] [PubMed] [Google Scholar]
  3. Arendt J., Wirz-Justice A., Bradtke J., Kornemark M. Long-term studies on immunoreactive human melatonin. Ann Clin Biochem. 1979 Nov;16(6):307–312. doi: 10.1177/000456327901600182. [DOI] [PubMed] [Google Scholar]
  4. Axelrod J. The pineal gland: a neurochemical transducer. Science. 1974 Jun 28;184(4144):1341–1348. doi: 10.1126/science.184.4144.1341. [DOI] [PubMed] [Google Scholar]
  5. Baumann P. A., Maître L. Blockade of presynaptic alpha-receptors and of amine uptake in the rat brain by the antidepressant mianserine. Naunyn Schmiedebergs Arch Pharmacol. 1977 Oct;300(1):31–37. doi: 10.1007/BF00505077. [DOI] [PubMed] [Google Scholar]
  6. Bergstrom D. A., Kellar K. J. Adrenergic and serotonergic receptor binding in rat brain after chronic desmethylimipramine treatment. J Pharmacol Exp Ther. 1979 May;209(2):256–261. [PubMed] [Google Scholar]
  7. Bäckström M. Selective beta-adrenoceptor antagonism of induced formation of 14C-N-acetylserotonin in rat pineal glands in organ culture. Life Sci. 1977 May 15;20(10):1763–1770. doi: 10.1016/0024-3205(77)90353-8. [DOI] [PubMed] [Google Scholar]
  8. Dafny N. Photic input to rat pineal gland conveyed by both sympathetic and central afferents. J Neural Transm. 1980;48(3):203–208. doi: 10.1007/BF01243504. [DOI] [PubMed] [Google Scholar]
  9. Engelhardt G. Pharmakologisches Wirkungsprofil von NAB 365 (Clenbuterol), einem neuen Broncholytikum mit einer selektiven Wirkung auf die adrenergen beta2-rezeptoren. Arzneimittelforschung. 1976;26(7A):1404–1420. [PubMed] [Google Scholar]
  10. Fuller R. W., Wong D. T. Inhibition of serotonin reuptake. Fed Proc. 1977 Jul;36(8):2154–2158. [PubMed] [Google Scholar]
  11. Hall H., Sällemark M., Ross S. B. Clenbuterol, a central beta-adrenoceptor agonist. Acta Pharmacol Toxicol (Copenh) 1980 Aug;47(2):159–160. doi: 10.1111/j.1600-0773.1980.tb01857.x. [DOI] [PubMed] [Google Scholar]
  12. Huang Y. H., Maas J. W., Hu G. H. The time course of noradrenergic pre- and postsynaptic activity during chronic desipramine treatment. Eur J Pharmacol. 1980 Nov 7;68(1):41–47. doi: 10.1016/0014-2999(80)90058-8. [DOI] [PubMed] [Google Scholar]
  13. Kafka M. S., Wirz-Justice A., Naber D. Circadian and seasonal rhythms in alpha- and beta-adrenergic receptors in the rat brain. Brain Res. 1981 Mar 2;207(2):409–419. doi: 10.1016/0006-8993(81)90373-5. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lynch H. J., Eng J. P., Wurtman R. J. Control of pineal indole biosynthesis by changes in sympathetic tone caused by factors other than environmental lighting. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1704–1707. doi: 10.1073/pnas.70.6.1704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mishra R., Janowsky A., Sulser F. Action of mianserin and zimelidine on the norepinephrine receptor coupled adenylate cyclase system in brain: subsensitivity without reduction in beta-adrenergic receptor binding. Neuropharmacology. 1980 Oct;19(10):983–987. doi: 10.1016/0028-3908(80)90009-x. [DOI] [PubMed] [Google Scholar]
  17. Moore R. Y. Neural control of pineal function in mammals and birds. J Neural Transm Suppl. 1978;(13):47–58. [PubMed] [Google Scholar]
  18. Moyer J. A., Greenberg L. H., Frazer A., Brunswick D. J., Mendels J., Weiss B. Opposite effects of acute and repeated administration of desmethylimipramine on adrenergic responsiveness in rat pineal gland. Life Sci. 1979 Jun 11;24(24):2237–2244. doi: 10.1016/0024-3205(79)90100-0. [DOI] [PubMed] [Google Scholar]
  19. Pandey G. N., Heinze W. J., Brown B. D., Davis J. M. Electroconvulsive shock treatment decrease beta-adrenergic receptor sensitivity in rat brain. Nature. 1979 Jul 19;280(5719):234–235. doi: 10.1038/280234a0. [DOI] [PubMed] [Google Scholar]
  20. Peroutka S. J., Snyder S. H. Long-term antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science. 1980 Oct 3;210(4465):88–90. doi: 10.1126/science.6251550. [DOI] [PubMed] [Google Scholar]
  21. Romero J. A., Zatz M., Kebabian J. W., Axelrod J. Circadian cycles in binding of 3H-alprenolol to beta-adrenergic receptor sites in rat pineal. Nature. 1975 Dec 4;258(5534):435–436. doi: 10.1038/258435a0. [DOI] [PubMed] [Google Scholar]
  22. Rosloff B. N., Davis J. M. Effect of iprindole on norepinephrine turnover and transport. Psychopharmacologia. 1974;40(1):53–64. doi: 10.1007/BF00429447. [DOI] [PubMed] [Google Scholar]
  23. Sellinger-Barnette M. M., Mendels J., Frazer A. The effect of psychoactive drugs on beta-adrenergic receptor binding sites in rat brain. Neuropharmacology. 1980 May;19(5):447–454. doi: 10.1016/0028-3908(80)90052-0. [DOI] [PubMed] [Google Scholar]
  24. Vetulani J., Sulser F. Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature. 1975 Oct 9;257(5526):495–496. doi: 10.1038/257495a0. [DOI] [PubMed] [Google Scholar]
  25. Wilkinson M., Arendt J., Bradtke J., de Ziegler D. Determination of a dark-induced increase of pineal N-acetyl transferase activity and simultaneous radioimmunoassay of melatonin in pineal, serum and pituitary tissue of the male rat. J Endocrinol. 1977 Feb;72(2):243–244. doi: 10.1677/joe.0.0720243. [DOI] [PubMed] [Google Scholar]
  26. Willner P., Montgomery T. Behavioural changes during withdrawal from desmethylimipramine (DMI). I. Interactions with amphetamine. Psychopharmacology (Berl) 1981;75(1):54–59. doi: 10.1007/BF00433502. [DOI] [PubMed] [Google Scholar]
  27. Willner P., Montgomery T., Bird D. Behavioural changes during withdrawal from desmethylimipramine (DMI). II. Increased resistance to extinction. Psychopharmacology (Berl) 1981;75(1):60–64. doi: 10.1007/BF00433503. [DOI] [PubMed] [Google Scholar]
  28. Wolfe B. B., Harden T. K., Sporn J. R., Molinoff P. B. Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J Pharmacol Exp Ther. 1978 Nov;207(2):446–457. [PubMed] [Google Scholar]
  29. Zatz M., Kebabian J. W., Romero J. A., Lefkowitz R. J., Axelrod J. Pineal beta adrenergic receptor: correlation of binding of 3H-l-alprenolol with stimulation of adenylate cyclase. J Pharmacol Exp Ther. 1976 Mar;196(3):714–722. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES