Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1983 Jan;78(1):207–212. doi: 10.1111/j.1476-5381.1983.tb09381.x

Evidence for an A1-adenosine receptor in the guinea-pig atrium.

M G Collis
PMCID: PMC2044793  PMID: 6297647

Abstract

1 The purpose of this study was to determine whether the adenosine receptor that mediates a decrease in the force of contraction of the guinea-pig atrium is of the A1- or A2-sub-type. 2 Concentration-response curves to adenosine and a number of 5'- and N6-substituted analogues were constructed and the order of potency of the purines was: 5'-N-cyclopropylcarboxamide adenosine (NCPCA) = 5'-N-ethylcarboxamide adenosine (NECA) greater than N6cyclohexyladenosine (CHA) greater than L-N6-phenylisopropyl adenosine (L-PIA) = 2-chloroadenosine- greater than adenosine greater than D-N6-phenylisopropyl adenosine (D-PIA). 3 The difference in potency between the stereoisomers D- and L-PIA was over 100 fold. 4 The adenosine transport inhibitor, dipyridamole, potentiated submaximal responses to adenosine but had no significant effect on those evoked by the other purines. 5 Theophylline antagonized responses evoked by all purines, and with D-PIA revealed a positive inotropic effect that was abolished by atenolol. 6 The results indicate the existence of an adenosine A1-receptor in the guinea-pig atrium.

Full text

PDF
207

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown C. M., Collis M. G. Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea. Br J Pharmacol. 1982 Jul;76(3):381–387. doi: 10.1111/j.1476-5381.1982.tb09231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bruns R. F. Adenosine receptor activation in human fibroblasts: nucleoside agonists and antagonists. Can J Physiol Pharmacol. 1980 Jun;58(6):673–691. doi: 10.1139/y80-110. [DOI] [PubMed] [Google Scholar]
  3. Bruns R. F., Daly J. W., Snyder S. H. Adenosine receptors in brain membranes: binding of N6-cyclohexyl[3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5547–5551. doi: 10.1073/pnas.77.9.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daly J. W. Adenosine receptors: targets for future drugs. J Med Chem. 1982 Mar;25(3):197–207. doi: 10.1021/jm00345a001. [DOI] [PubMed] [Google Scholar]
  5. Davies L. P., Baird-Lambert J., Jamieson D. D. Potentiation of pharmacological responses to adenosine, in vitro and in vivo. Gen Pharmacol. 1982;13(1):27–33. doi: 10.1016/0306-3623(82)90006-4. [DOI] [PubMed] [Google Scholar]
  6. Londos C., Wolff J. Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5482–5486. doi: 10.1073/pnas.74.12.5482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Paton D. M. Structure-activity relations for presynaptic inhibition of noradrenergic and cholinergic transmission by adenosine: evidence for action on A1 receptors. J Auton Pharmacol. 1981 Sep;1(4):287–290. doi: 10.1111/j.1474-8673.1981.tb00457.x. [DOI] [PubMed] [Google Scholar]
  8. Rockoff J. B., Dobson J. G., Jr Inhibition by adenosine of catecholamine-induced increase in rat atrial contractility. Am J Physiol. 1980 Sep;239(3):H365–H370. doi: 10.1152/ajpheart.1980.239.3.H365. [DOI] [PubMed] [Google Scholar]
  9. van Calker D., Müller M., Hamprecht B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979 Nov;33(5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES