Abstract
1 Replacement of chloride by isethionate in Ringer solution bathing frog skeletal muscle fibres induces, after a delay of about 30 min, marked mechanical activity which was blocked by tubocurarine. This effect is reversed by washing out the isethionate. 2 Miniature end plate potentials (m.e.p.ps) and giant potentials (potentials greater than or equal to 2 X modal value) were recorded intracellularly in normal Ringer and isethionate Ringer solution. 3 The frequency of m.e.p.ps was unaltered by isethionate. The proportion of giant potentials increased from 3% in normal Ringer to 24.5% in isethionate Ringer after 90 min. This effect is usually reversible if the exposure to isethionate does not exceed 2 h. 4 The giant potentials were large enough to initiate trains of action potentials and still occurred in the presence of tetrodotoxin or Ca2+-free Ringer. Isethionate produced no change in the tau D of miniature endplate currents. 5 Chloride replacement by propionate produced no change in the proportion of giant potentials. 6 It is suggested that the isethionate anion can induce giant potentials and the possible mechanism of action is discussed.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adrian R. H., Bryant S. H. On the repetitive discharge in myotonic muscle fibres. J Physiol. 1974 Jul;240(2):505–515. doi: 10.1113/jphysiol.1974.sp010620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adrian R. H., Marshall M. W. Action potentials reconstructed in normal and myotonic muscle fibres. J Physiol. 1976 Jun;258(1):125–143. doi: 10.1113/jphysiol.1976.sp011410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashford M. L., Wann K. T. An effect of isethionate on neuromuscular transmission in the frog [proceedings]. J Physiol. 1978 Dec;285:48P–49P. [PubMed] [Google Scholar]
- Baker P. F., Crawford A. C. A note of the mechanism by which inhibitors of the sodium pump accelerate spontaneous release of transmitter from motor nerve terminals. J Physiol. 1975 May;247(1):209–226. doi: 10.1113/jphysiol.1975.sp010928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birks R. I., Cohen M. W. The action of sodium pump inhibitors on neuromuscular transmission. Proc R Soc Lond B Biol Sci. 1968 Jul 9;170(1021):381–399. doi: 10.1098/rspb.1968.0046. [DOI] [PubMed] [Google Scholar]
- Birks R. I., Cohen M. W. The influence of internal sodium on the behaviour of motor nerve endings. Proc R Soc Lond B Biol Sci. 1968 Jul 9;170(1021):401–421. doi: 10.1098/rspb.1968.0047. [DOI] [PubMed] [Google Scholar]
- Bryant S. H. Myotonia in the goat. Ann N Y Acad Sci. 1979;317:314–325. doi: 10.1111/j.1749-6632.1979.tb56540.x. [DOI] [PubMed] [Google Scholar]
- Christoffersen C. R., Skibsted L. H. Calcium ion activity in physiological salt solutions: influence of anions substituted for chloride. Comp Biochem Physiol A Comp Physiol. 1975 Oct 1;52(2):317–322. doi: 10.1016/s0300-9629(75)80094-6. [DOI] [PubMed] [Google Scholar]
- Cull-Candy S. G., Fohlman J., Gustavsson D., Lüllmann-Rauch R., Thesleff S. The effects of taipoxin and notexin on the function and fine structure of the murine neuromuscular junction. Neuroscience. 1976 Jun;1(3):175–180. doi: 10.1016/0306-4522(76)90074-9. [DOI] [PubMed] [Google Scholar]
- Cull-Candy S. G., Lundh H., Thesleff S. Effects of botulinum toxin on neuromuscular transmission in the rat. J Physiol. 1976 Aug;260(1):177–203. doi: 10.1113/jphysiol.1976.sp011510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEL CASTILLO J., KATZ B. Localization of active spots within the neuromuscular junction of the frog. J Physiol. 1956 Jun 28;132(3):630–649. doi: 10.1113/jphysiol.1956.sp005554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durant N. N., Marshall I. G. The effects of 3,4-diaminopyridine on acetylcholine release at the frog neuromuscular junction. Eur J Pharmacol. 1980 Oct 17;67(2-3):201–208. doi: 10.1016/0014-2999(80)90499-9. [DOI] [PubMed] [Google Scholar]
- FATT P., KATZ B. Spontaneous subthreshold activity at motor nerve endings. J Physiol. 1952 May;117(1):109–128. [PMC free article] [PubMed] [Google Scholar]
- Gage P. W. Generation of end-plate potentials. Physiol Rev. 1976 Jan;56(1):177–247. doi: 10.1152/physrev.1976.56.1.177. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUTTER O. F., NOBLE D. The chloride conductance of frog skeletal muscle. J Physiol. 1960 Apr;151:89–102. [PMC free article] [PubMed] [Google Scholar]
- Hawgood B. J., Santana de Sa S. Changes in spontaneous and evoked release of transmitter induced by the crotoxin complex and its component phospholipase A2 at the frog neuromuscular junction. Neuroscience. 1979;4(2):293–303. doi: 10.1016/0306-4522(79)90090-3. [DOI] [PubMed] [Google Scholar]
- Heuser J. E. Proceedings: A possible origin of the 'giant' spontaneous potentials that occur after prolonged transmitter release at frog neuromuscular junctions. J Physiol. 1974 Jun;239(2):106P–108P. doi: 10.1113/jphysiol.1974.sp010593. [DOI] [PubMed] [Google Scholar]
- Heuser J., Katz B., Miledi R. Structural and functional changes of frog neuromuscular junctions in high calcium solutions. Proc R Soc Lond B Biol Sci. 1971 Sep 28;178(1053):407–415. doi: 10.1098/rspb.1971.0072. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. Estimates of quantal content during 'chemical potentiation' of transmitter release. Proc R Soc Lond B Biol Sci. 1979 Aug 31;205(1160):369–378. doi: 10.1098/rspb.1979.0070. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. Spontaneous and evoked activity of motor nerve endings in calcium Ringer. J Physiol. 1969 Aug;203(3):689–706. doi: 10.1113/jphysiol.1969.sp008887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LILEY A. W. Spontaneous release of transmitter substance in multiquantal units. J Physiol. 1957 May 23;136(3):595–605. doi: 10.1113/jphysiol.1957.sp005784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miledi R., Thies R. Tetanic and post-tetanic rise in frequency of miniature end-plate potentials in low-calcium solutions. J Physiol. 1971 Jan;212(1):245–257. doi: 10.1113/jphysiol.1971.sp009320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molgó J., Thesleff S. 4-aminoquinoline-induced 'giant' miniature endplate potentials at mammalian neuromuscular junctions. Proc R Soc Lond B Biol Sci. 1982 Jan 22;214(1195):229–244. doi: 10.1098/rspb.1982.0006. [DOI] [PubMed] [Google Scholar]
- Pécot-Dechavassine M. Action of vinblastine on the spontaneous release of acetylcholine at the frog neuromuscular junction. J Physiol. 1976 Sep;261(1):31–48. doi: 10.1113/jphysiol.1976.sp011547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pécot-Dechavassine M., Couteaux R. Modifications structurales des terminaisons motrices de muscles de grenouille soumis á l'action de la vinblastine. C R Acad Sci Hebd Seances Acad Sci D. 1975 Mar 3;280(9):1099–1101. [PubMed] [Google Scholar]
- Pécot-Dechavassine M., Couteaux R. Potentiels miniatures d'amplitude anormale obtenus dans des conditions expérimentales et changements concomitants des structures présynaptiques. C R Acad Sci Hebd Seances Acad Sci D. 1972 Aug 28;275(9):983–986. [PubMed] [Google Scholar]
- Pécot-Dechavassine M., Couteaux R. Recherches sur la signification physiologique et structurale des potentiels miniatures d'amplitude anormale observés au niveau de la jonction neuromusculaire de la grenouille dans diverses conditions expérimentales. J Physiol (Paris) 1971;63(6):138A–138A. [PubMed] [Google Scholar]
- Pécot-Dechavassine M. Effets conjugués du pH et des cations divalents sur la libération spontanée d'acétylcholine au niveau de la plaque motrice de la Grenouille. C R Acad Sci Hebd Seances Acad Sci D. 1970 Aug 17;271(7):674–677. [PubMed] [Google Scholar]
- Rüdel R., Senges J. Mammalian skeletal muscle: reduced chloride conductance in drug-induced myotonia and induction of myotonia by low-chloride solution. Naunyn Schmiedebergs Arch Pharmacol. 1972;274(4):337–347. doi: 10.1007/BF00501271. [DOI] [PubMed] [Google Scholar]
- Sharp A. P., Thomas R. C. The effects of chloride substitution on intracellular pH in crab muscle. J Physiol. 1981 Mar;312:71–80. doi: 10.1113/jphysiol.1981.sp013616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stefani E., Schmidt H. A convenient method for repeated intracellular recording of action potentials from the same muscle fibre without membrane damage. Pflugers Arch. 1972;334(3):276–278. doi: 10.1007/BF00626229. [DOI] [PubMed] [Google Scholar]
- Turkanis S. A. Some effects of vinblastine and colchicine on neuromuscular transmission. Brain Res. 1973 May 17;54:324–329. doi: 10.1016/0006-8993(73)90055-3. [DOI] [PubMed] [Google Scholar]
- Woodbury J. W., Miles P. R. Anion conductance of frog muscle membranes: one channel, two kinds of pH dependence. J Gen Physiol. 1973 Sep;62(3):324–353. doi: 10.1085/jgp.62.3.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
