Abstract
The actions of pancuronium, a selective antagonist of acetylcholine (ACh) at nicotinic cholinoceptors at motor endplates, and hexamethonium, a selective antagonist of ACh at nicotinic cholinoceptors in autonomic ganglia, have been studied in rat phrenic nerve diaphragm preparations. The effects on paraoxon-induced twitch potentiation and antidromic firing (ADF) in the phrenic nerve, were compared with the effects on normal twitch tension and intracellularly recorded miniature endplate potentials (m.e.p.ps) and endplate potentials (e.p.ps.) In preparations exposed to paraoxon, pancuronium was found to be approximately 10 times more effective in reducing the potentiated component of the twitch than the component which corresponded to the pre-paraoxon twitch. A similar result was obtained with hexamethonium. Pancuronium and hexamethonium, in concentrations which reduced paraoxon-induced twitch potentiation but had no effect on the twitch tension of preparations not treated with paraoxon, reduced paraoxon-induced ADF. The lowest concentrations of pancuronium and hexamethonium required for this also reduced the amplitude of m.e.p.ps and e.p.ps. Dithiothreitol, a disulphide bond reducing agent which reduces the affinity of ACh for nicotinic cholinoceptors, enhanced the potency of pancuronium 2 to 3 fold. The same also applied for hexamethonium. It is concluded that the experiments failed to provide evidence for an action of ACh on prejunctional nicotinic cholinoceptors of the ganglionic-type being involved in the initiation by paraoxon of twitch potentiation and ADF. Furthermore, the results obtained can be explained by pancuronium and hexamethonium reducing the action of ACh at the postjunctional membrane.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adrian R. H., Marshall M. W. Sodium currents in mammalian muscle. J Physiol. 1977 Jun;268(1):223–250. doi: 10.1113/jphysiol.1977.sp011855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ascher P., Large W. A., Rang H. P. Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells. J Physiol. 1979 Oct;295:139–170. doi: 10.1113/jphysiol.1979.sp012958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BOYD I. A., MARTIN A. R. The end-plate potential in mammalian muscle. J Physiol. 1956 Apr 27;132(1):74–91. doi: 10.1113/jphysiol.1956.sp005503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Haim D., Landau E. M., Silman I. The role of a reactive disulphide bond in the function of the acetylcholine receptor at the frog neuromuscular junction. J Physiol. 1973 Oct;234(2):305–325. doi: 10.1113/jphysiol.1973.sp010347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowman W. C. Prejunctional and postjunctional cholinoceptors at the neuromuscular junction. Anesth Analg. 1980 Dec;59(12):935–943. [PubMed] [Google Scholar]
- Clark A. L., Hobbiger F., Terrar D. A. The effect of dithiothreitol on anticholinesterase induced antidromic firing and twitch potentiation [proceedings]. Br J Pharmacol. 1979 Nov;67(3):481P–482P. [PMC free article] [PubMed] [Google Scholar]
- Clark A. L., Hobbiger F., Terrar D. A. The relationship between stimulus-induced antidromic firing and twitch potentiation produced by paraoxon in rat phrenic nerve-diaphragm preparations. Br J Pharmacol. 1983 Sep;80(1):17–25. doi: 10.1111/j.1476-5381.1983.tb11044.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniels M. P., Vogel Z. Immunoperoxidase staining of alpha-bungarotoxin binding sites in muscle endplates shows distribution of acetylcholine receptors. Nature. 1975 Mar 27;254(5498):339–341. doi: 10.1038/254339a0. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. The binding of acetylcholine to receptors and its removal from the synaptic cleft. J Physiol. 1973 Jun;231(3):549–574. doi: 10.1113/jphysiol.1973.sp010248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LILEY A. W. Spontaneous release of transmitter substance in multiquantal units. J Physiol. 1957 May 23;136(3):595–605. doi: 10.1113/jphysiol.1957.sp005784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lancaster R. Inhibition of acetylcholinesterase in the brain and diaphragm of rats by a tertiary organophosphorous anticholinesterase and its quaternary analogue; in vivo and in vitro studies. J Neurochem. 1972 Nov;19(11):2587–2597. doi: 10.1111/j.1471-4159.1972.tb01317.x. [DOI] [PubMed] [Google Scholar]
- Lancaster R. Relationships between in vivo and in vitro inhibition of acetylcholinesterase (AChE) and impairment of neuromuscular transmission in the rat phrenic-nerve diaphragm by a tertiary anticholinesterase and its quaternary analogue. Biochem Pharmacol. 1973 Aug 1;22(15):1875–1881. doi: 10.1016/0006-2952(73)90047-6. [DOI] [PubMed] [Google Scholar]
- Lentz T. L., Mazurkiewicz J. E., Rosenthal J. Cytochemical localization of acetylcholine receptors at the neuromuscular junction by means of horseradish peroxidase-labeled alpha-bungarotoxin. Brain Res. 1977 Sep 2;132(3):423–442. doi: 10.1016/0006-8993(77)90192-5. [DOI] [PubMed] [Google Scholar]
- Magleby K. L., Terrar D. A. Factors affecting the time course of decay of end-plate currents: a possible cooperative action of acetylcholine on receptors at the frog neuromuscular junction. J Physiol. 1975 Jan;244(2):467–495. doi: 10.1113/jphysiol.1975.sp010808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pappone P. A. Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibres. J Physiol. 1980 Sep;306:377–410. doi: 10.1113/jphysiol.1980.sp013403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terrar D. A. Effects of dithiothreitol on end-plate currents. J Physiol. 1978 Mar;276:403–417. doi: 10.1113/jphysiol.1978.sp012243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb S. N., Bowman W. C. The role of pre-and post-junctional cholinoceptors in the action of neostigmine at the neuromuscular junction. Clin Exp Pharmacol Physiol. 1974 Mar-Apr;1(2):123–134. doi: 10.1111/j.1440-1681.1974.tb00533.x. [DOI] [PubMed] [Google Scholar]
