Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1983 Oct;80(2):249–254. doi: 10.1111/j.1476-5381.1983.tb10027.x

Vitamin C increases the formation of prostacyclin by aortic rings from various species and neutralizes the inhibitory effect of 15-hydroperoxy-arachidonic acid.

J R Beetens, A G Herman
PMCID: PMC2045015  PMID: 6360278

Abstract

Aortic rings from rats, rabbits and guinea-pigs produce different amounts of 6-oxo-prostaglandin F1 alpha (6-oxo-PGF1 alpha), the stable breakdown product of prostacyclin, i.e. 2760 +/- 195, 160 +/- 10 and 87 +/- 17 pg 6-oxo-PGF1 alpha per mg wet weight in 30 min. Vitamin C enhances the production of 6-oxo-PGF1 alpha by the aortic tissue of these three species, independent of their basal release. This increase was only significant if vitamin C was present in the preincubation as well as in the incubation fluid. 15-Hydroperoxy-arachidonic acid inhibits the production of 6-oxo-PGF1 alpha (IC50:6 microM) and this inhibitory effect was completely neutralized by vitamin C. The increased production of 6-oxo-PGF1 alpha is not due to an increased release of the substrate arachidonic acid. It is suggested that vitamin C enhances the formation of 6-oxo-PGF1 alpha by protecting the cyclo-oxygenase and PGI-synthase.

Full text

PDF
249

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beetens J. R., Van Den Bossche R., Herman A. G. Production of 6-Oxo-PGF1 alpha by aorta rings in the presence of ascorbic acid. Arch Int Pharmacodyn Ther. 1982 Mar;256(1):151–152. [PubMed] [Google Scholar]
  2. Bielski B. H., Richter H. W., Chan P. C. Some properties of the ascorbate free radical. Ann N Y Acad Sci. 1975 Sep 30;258:231–237. doi: 10.1111/j.1749-6632.1975.tb29283.x. [DOI] [PubMed] [Google Scholar]
  3. Dembinska-Kiec A., Gryglewska T., Zmuda A., Gryglewski R. J. The generation of prostacyclin by arteries and by the coronary vascular bed is reduced in experimental atherosclerosis in rabbits. Prostaglandins. 1977;14(6):1025–1034. doi: 10.1016/0090-6980(77)90282-9. [DOI] [PubMed] [Google Scholar]
  4. Egan R. W., Paxton J., Kuehl F. A., Jr Mechanism for irreversible self-deactivation of prostaglandin synthetase. J Biol Chem. 1976 Dec 10;251(23):7329–7335. [PubMed] [Google Scholar]
  5. Gryglewski R. J., Bunting S., Moncada S., Flower R. J., Vane J. R. Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they make from prostaglandin endoperoxides. Prostaglandins. 1976 Nov;12(5):685–713. doi: 10.1016/0090-6980(76)90047-2. [DOI] [PubMed] [Google Scholar]
  6. Hamberg M., Samuelsson B. On the specificity of the oxygenation of unsaturated fatty acids catalyzed by soybean lipoxidase. J Biol Chem. 1967 Nov 25;242(22):5329–5335. [PubMed] [Google Scholar]
  7. Hornstra G., Haddeman E., Don J. A. Some investigations into the role of prostacyclin in thromboregulation. Thromb Res. 1978 Feb;12(2):367–374. doi: 10.1016/0049-3848(78)90308-0. [DOI] [PubMed] [Google Scholar]
  8. Moncada S., Gryglewski R., Bunting S., Vane J. R. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976 Oct 21;263(5579):663–665. doi: 10.1038/263663a0. [DOI] [PubMed] [Google Scholar]
  9. Polgar P., Douglas W. H., Terracio L., Taylor L. Release of arachidonic acid and its conversion to prostaglandins in various diploid cell types in culture. Adv Prostaglandin Thromboxane Res. 1980;6:225–229. [PubMed] [Google Scholar]
  10. Polgar P., Taylor L. Stimulation of prostaglandin synthesis by ascorbic acid via hydrogen peroxide formation. Prostaglandins. 1980 May;19(5):693–700. doi: 10.1016/0090-6980(80)90168-9. [DOI] [PubMed] [Google Scholar]
  11. Ravikumar P. R., Pai J. K., Zmijewski M. J., Sih C. J. Biosynthesis of prostaglandin D2, 15-ketoprostaglandin E2, and hydroxy fatty acids by ram seminal vesicle microsomes. J Pharm Sci. 1979 Oct;68(10):1302–1306. doi: 10.1002/jps.2600681028. [DOI] [PubMed] [Google Scholar]
  12. Salmon J. A., Smith D. R., Flower R. J., Moncada S., Vane J. R. Further studies on the enzymatic conversion of prostaglandin endoperoxide into prostacyclin by porcine aorta microsomes. Biochim Biophys Acta. 1978 Mar 14;523(1):250–262. doi: 10.1016/0005-2744(78)90028-1. [DOI] [PubMed] [Google Scholar]
  13. Sinzinger H., Feigl W., Silberbauer K., Oppolzer R., Winter M., Auerswald W. Prostacyclin (PGI2)-generation by different types of human atherosclerotic lesions. Exp Pathol (Jena) 1980;18(3):175–180. doi: 10.1016/s0014-4908(80)80018-4. [DOI] [PubMed] [Google Scholar]
  14. Spittle C. R. The action of vitamin C on blood vessels. Am Heart J. 1974 Sep;88(3):387–388. doi: 10.1016/0002-8703(74)90477-3. [DOI] [PubMed] [Google Scholar]
  15. Tschopp T. B., Baumgartner H. R. Platelet adhesion and mural platelet thrombus formation on aortic subendothelium of rats, rabbits, and guinea pigs correlate negatively with the vascular PGI2 production. J Lab Clin Med. 1981 Sep;98(3):402–411. [PubMed] [Google Scholar]
  16. Turley S. D., West C. E., Horton B. J. The role of ascorbic acid in the regulation of cholesterol metabolism and in the pathogenesis of artherosclerosis. Atherosclerosis. 1976 Jul-Aug;24(1-2):1–18. doi: 10.1016/0021-9150(76)90060-5. [DOI] [PubMed] [Google Scholar]
  17. Weiss S. J., Turk J., Needleman P. A mechanism for the hydroperoxide-mediated inactivation of prostacyclin synthetase. Blood. 1979 Jun;53(6):1191–1196. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES