Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1983 Dec;80(4):639–644. doi: 10.1111/j.1476-5381.1983.tb10053.x

Inhibition by xanthine derivatives of adenosine receptor-stimulated cyclic adenosine 3',5'-monophosphate accumulation in rat and guinea-pig thymocytes.

B B Fredholm, G Sandberg
PMCID: PMC2045063  PMID: 6100843

Abstract

The effect of stable adenosine analogues, including adenosine 5'-N-ethylcarboxamide (NECA) and N6-L-phenylisopropyl-adenosine (L-PIA), were studied on cyclic adenosine 3', 5'-monophosphate (cyclic AMP) accumulation in rat and guinea-pig thymocytes. NECA was approximately 10 times more potent than L-PIA, in thymocytes from both species. D-PIA was more potent in guinea-pig than in rat thymocytes. The effect of a number of adenosine analogues followed the order: NECA greater than 2-chloro-adenosine greater than L-PIA greater than N6-cyclohexyl-adenosine (CHA), an order of potency characteristic for adenosine receptors of the A2-subtype. Thymocytes may be used as a model system to study the pharmacology of such receptors. Several xanthines were studied as antagonists of the NECA (1 microM)-induced cyclic AMP accumulation. The order of potency was: 1,3-diethyl-8-phenylxanthine greater than 8-phenyl-theophylline greater than IBMX = 8-p-sulphophenyltheophylline = verrophylline greater than theophylline greater than caffeine greater than enprofylline greater than theobromine greater than pentoxiphylline. The pA2 value for 8-phenyltheophylline was 0.35 microM, and the antagonism was shown to be competitive. The order of potency of the xanthine is virtually identical to that found earlier in several other systems in which the receptors are of the A1-subtype. None of the xanthine derivatives tested thus seem to discriminate between A1 and A2-receptor-mediated adenosine actions.

Full text

PDF
639

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonnafous J. C., Dornand J., Favero J., Mani J. C. Lymphocyte membrane adenosine receptors coupled to adenylate cyclase: properties and occurrence in various lymphocyte subclasses. J Recept Res. 1981;2(4):347–366. doi: 10.3109/107998981809038872. [DOI] [PubMed] [Google Scholar]
  2. Bonnafous J. C., Dornand J., Mani J. C. Adenosine-induced cyclic AMP increase in pig lymphocytes is not related to adenylate cyclase stimulation. Biochim Biophys Acta. 1979 Oct 4;587(2):180–191. doi: 10.1016/0304-4165(79)90352-0. [DOI] [PubMed] [Google Scholar]
  3. Bonnafous J. C., Dornand J., Mani J. C. Hormone-like action of adenosine in mouse thymocytes and splenocytes: Evidence for the existence of membrane adenosine receptors coupled to adenylate cyclase. FEBS Lett. 1979 Nov 1;107(1):95–99. doi: 10.1016/0014-5793(79)80471-8. [DOI] [PubMed] [Google Scholar]
  4. Bruns R. F., Daly J. W., Snyder S. H. Adenosine receptors in brain membranes: binding of N6-cyclohexyl[3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5547–5551. doi: 10.1073/pnas.77.9.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fox I. H. Metabolic basis for disorders of purine nucleotide degradation. Metabolism. 1981 Jun;30(6):616–634. doi: 10.1016/0026-0495(81)90142-6. [DOI] [PubMed] [Google Scholar]
  6. Fredholm B. B. Adenosine receptors. Med Biol. 1982 Dec;60(6):289–293. [PubMed] [Google Scholar]
  7. Fredholm B. B., Jonzon B., Lindgren E., Lindström K. Adenosine receptors mediating cyclic AMP production in the rat hippocampus. J Neurochem. 1982 Jul;39(1):165–175. doi: 10.1111/j.1471-4159.1982.tb04715.x. [DOI] [PubMed] [Google Scholar]
  8. Fredholm B. B., Persson C. G. Xanthine derivatives as adenosine receptor antagonists. Eur J Pharmacol. 1982 Jul 30;81(4):673–676. doi: 10.1016/0014-2999(82)90359-4. [DOI] [PubMed] [Google Scholar]
  9. Fredholm B. B., Sandberg G., Ernström U. Cyclic AMP in freshly prepared thymocyte suspensions, Evidence for stimulation by endogenous adenosine. Biochem Pharmacol. 1978;27(23):2675–2682. doi: 10.1016/0006-2952(78)90041-2. [DOI] [PubMed] [Google Scholar]
  10. Londos C., Cooper D. M., Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A. 1980 May;77(5):2551–2554. doi: 10.1073/pnas.77.5.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marone G., Plaut M., Lichtenstein L. M. Characterization of a specific adenosine receptor on human lymphocytes. J Immunol. 1978 Dec;121(6):2153–2159. [PubMed] [Google Scholar]
  12. Moroz C., Stevens R. H. Suppression of immunoglobulin production in normal human B lymphocytes by two T-cell subsets distinguished following in vitro treatment with adenosine. Clin Immunol Immunopathol. 1980 Jan;15(1):44–51. doi: 10.1016/0090-1229(80)90019-7. [DOI] [PubMed] [Google Scholar]
  13. Nordeen S. K., Young D. A. Separation of effects of adenosine on energy metabolism from those on cyclic AMP in rat thymic lymphocytes. J Biol Chem. 1977 Aug 10;252(15):5324–5331. [PubMed] [Google Scholar]
  14. Persson C. G., Erjefält I., Karlsson J. A. Adenosine antagonism, a less desirable characteristic of xanthine asthma drugs? Acta Pharmacol Toxicol (Copenh) 1981 Oct;49(4):317–320. doi: 10.1111/j.1600-0773.1981.tb00913.x. [DOI] [PubMed] [Google Scholar]
  15. Persson C. G., Erjefält I. Seizure activity in animals given enprofylline and theophylline, two xanthines with partly different mechanisms of action. Arch Int Pharmacodyn Ther. 1982 Aug;258(2):267–282. [PubMed] [Google Scholar]
  16. Sandberg G., Fredholm B. B. Regulation of thymocyte proliferation: effects of L-alanine, adenosine and cyclic AMP in vitro. Thymus. 1981 Aug;3(2):63–75. [PubMed] [Google Scholar]
  17. Schwabe U., Trost T. Characterization of adenosine receptors in rat brain by (-)[3H]N6-phenylisopropyladenosine. Naunyn Schmiedebergs Arch Pharmacol. 1980 Sep;313(3):179–187. doi: 10.1007/BF00505731. [DOI] [PubMed] [Google Scholar]
  18. Schwartz A. L., Stern R. C., Polmar S. H. Demonstration of adenosine receptor on human lymphocytes in vitro and its possible role in the adenosine deaminase-deficient form of severe combined immunodeficiency. Clin Immunol Immunopathol. 1978 Apr;9(4):499–505. doi: 10.1016/0090-1229(78)90146-0. [DOI] [PubMed] [Google Scholar]
  19. Snider D. E., Jr, Parker C. W. Adenylate cyclase activity in lymphocyte subcellular fractions. Characterization of non-nuclear adenylate cyclase. Biochem J. 1977 Mar 15;162(3):473–482. doi: 10.1042/bj1620473a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Strom T. B., Lundin A. P., Carpenter C. B. The role of cyclic nucleotides in lymphocyte activation and function. Prog Clin Immunol. 1977;3:115–153. [PubMed] [Google Scholar]
  21. Wolberg G., Zimmerman T. P., Duncan G. S., Singer K. H., Elion G. B. Inhibition of lymphocyte-mediated cytolysis by adenosine analogs. Biochemical studies concerning mechanism of action. Biochem Pharmacol. 1978 May 15;27(10):1487–1495. doi: 10.1016/0006-2952(78)90105-3. [DOI] [PubMed] [Google Scholar]
  22. Zenser T. V. Formation of adenosine 3',5'-monophosphate from adenosine in mouse thymocytes. Biochim Biophys Acta. 1975 Oct 9;404(2):202–213. doi: 10.1016/0304-4165(75)90326-8. [DOI] [PubMed] [Google Scholar]
  23. Zimmerman T. P., Wolberg G., Duncan G. S., Rideout J. L., Beacham L. M., 3rd, Krenitsky T. A., Elion G. B. Inhibition of lymphocyte-mediated cytolysis by 2-fluoroadenosine--evidence for two discrete mechanisms of drug action. Biochem Pharmacol. 1978;27(13):1731–1737. doi: 10.1016/0006-2952(78)90549-x. [DOI] [PubMed] [Google Scholar]
  24. Zivin J. A., Waud D. R. How to analyze binding, enzyme and uptake data: the simplest case, a single phase. Life Sci. 1982 Apr 26;30(17):1407–1422. doi: 10.1016/0024-3205(82)90554-9. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES