Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 May;175(10):2809–2817. doi: 10.1128/jb.175.10.2809-2817.1993

Identification of a segment of the Escherichia coli Tsx protein that functions as a bacteriophage receptor area.

H Schneider 1, H Fsihi 1, B Kottwitz 1, B Mygind 1, E Bremer 1
PMCID: PMC204595  PMID: 8491700

Abstract

The Escherichia coli outer membrane protein Tsx functions as a nucleoside-specific channel and serves as the receptor for colicin K and a number of T-even-type bacteriophages, including phage T6. To identify those segments of the Tsx protein that are important for its phage receptor function, we devised a selection and screening procedure which allowed us to isolate phage-resistant strains synthesizing normal amounts of Tsx. Three different Tsx-specific phages (T6, Ox1, and H3) were employed for the selection of phage-resistant derivatives of a strain expressing a tsx(+)-lacZ+ operon fusion, and 28 tsx mutants with impaired phage receptor function were characterized. Regardless of the Tsx-specific phage used for the initial mutant selection, cross-resistance against a set of six different Tsx phages invariably occurred. With one exception, these mutant Tsx proteins could still serve as a colicin K receptor. DNA sequence analysis of 10 mutant tsx genes revealed the presence of four distinct tsx alleles: two point mutations, an 18-bp deletion, and a 27-bp tandem duplication. In three isolates, Asn-249 was replaced by a Lys residue (tsx-504), and in four others, residue Asn-254 was replaced by Lys (tsx-505). The deletion (tsx-506; one isolate) removed six amino acids (residue 239 to residue 244) from the 272-residue Tsx polypeptide chain, and the DNA duplication (tsx-507; two isolates) resulted in the addition of nine extra amino acids (residue 229 to residue 237) to the Tsx protein. In contrast to the wild-type Tsx protein and the other mutant Tsx proteins the Tsx-507 protein was cleaved by trypsin when intact cells were treated with this protease. The Tsx proteins encoded by the four tsx alleles still functioned in deoxyadenosine uptake in vivo, demonstrating that their nucleoside-specific channel activity was not affected by the alterations that caused the loss of their phage receptor function. HTe changes in the Tsx polypeptide that confer resistance against the Tsx-specific phages are clustered in a small region near the carboxy terminus of Tsx. Our results are discussed in terms of a model for the topological organization of the carboxy-terminal end of the Tsx protein within the outer membrane.

Full text

PDF
2809

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agterberg M., Adriaanse H., Tijhaar E., Resink A., Tommassen J. Role of the cell surface-exposed regions of outer membrane protein PhoE of Escherichia coli K12 in the biogenesis of the protein. Eur J Biochem. 1989 Nov 6;185(2):365–370. doi: 10.1111/j.1432-1033.1989.tb15124.x. [DOI] [PubMed] [Google Scholar]
  2. Albertini A. M., Hofer M., Calos M. P., Miller J. H. On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell. 1982 Jun;29(2):319–328. doi: 10.1016/0092-8674(82)90148-9. [DOI] [PubMed] [Google Scholar]
  3. Anderson R. P., Roth J. R. Tandem genetic duplications in phage and bacteria. Annu Rev Microbiol. 1977;31:473–505. doi: 10.1146/annurev.mi.31.100177.002353. [DOI] [PubMed] [Google Scholar]
  4. Bachmann B. J. Linkage map of Escherichia coli K-12, edition 8. Microbiol Rev. 1990 Jun;54(2):130–197. doi: 10.1128/mr.54.2.130-197.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benz R., Schmid A., Maier C., Bremer E. Characterization of the nucleoside-binding site inside the Tsx channel of Escherichia coli outer membrane. Reconstitution experiments with lipid bilayer membranes. Eur J Biochem. 1988 Oct 1;176(3):699–705. doi: 10.1111/j.1432-1033.1988.tb14333.x. [DOI] [PubMed] [Google Scholar]
  6. Berman M. L., Jackson D. E. Selection of lac gene fusions in vivo: ompR-lacZ fusions that define a functional domain of the ompR gene product. J Bacteriol. 1984 Aug;159(2):750–756. doi: 10.1128/jb.159.2.750-756.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Braun G., Cole S. T. DNA sequence analysis of the Serratia marcescens ompA gene: implications for the organisation of an enterobacterial outer membrane protein. Mol Gen Genet. 1984;195(1-2):321–328. doi: 10.1007/BF00332766. [DOI] [PubMed] [Google Scholar]
  8. Bremer E., Gerlach P., Middendorf A. Double negative and positive control of tsx expression in Escherichia coli. J Bacteriol. 1988 Jan;170(1):108–116. doi: 10.1128/jb.170.1.108-116.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bremer E., Middendorf A., Martinussen J., Valentin-Hansen P. Analysis of the tsx gene, which encodes a nucleoside-specific channel-forming protein (Tsx) in the outer membrane of Escherichia coli. Gene. 1990 Nov 30;96(1):59–65. doi: 10.1016/0378-1119(90)90341-n. [DOI] [PubMed] [Google Scholar]
  10. Bremer E., Silhavy T. J., Weinstock G. M. Transposition of lambda placMu is mediated by the A protein altered at its carboxy-terminal end. Gene. 1988 Nov 15;71(1):177–186. doi: 10.1016/0378-1119(88)90089-3. [DOI] [PubMed] [Google Scholar]
  11. Casadaban M. J. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol. 1976 Jul 5;104(3):541–555. doi: 10.1016/0022-2836(76)90119-4. [DOI] [PubMed] [Google Scholar]
  12. Cole S. T., Chen-Schmeisser U., Hindennach I., Henning U. Apparent bacteriophage-binding region of an Escherichia coli K-12 outer membrane protein. J Bacteriol. 1983 Feb;153(2):581–587. doi: 10.1128/jb.153.2.581-587.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Datta D. B., Arden B., Henning U. Major proteins of the Escherichia coli outer cell envelope membrane as bacteriophage receptors. J Bacteriol. 1977 Sep;131(3):821–829. doi: 10.1128/jb.131.3.821-829.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Francoz E., Molla A., Dassa E., Saurin W., Hofnung M. The maltoporin of Salmonella typhimurium: sequence and folding model. Res Microbiol. 1990 Nov-Dec;141(9):1039–1059. doi: 10.1016/0923-2508(90)90078-5. [DOI] [PubMed] [Google Scholar]
  15. Gehring K., Charbit A., Brissaud E., Hofnung M. Bacteriophage lambda receptor site on the Escherichia coli K-12 LamB protein. J Bacteriol. 1987 May;169(5):2103–2106. doi: 10.1128/jb.169.5.2103-2106.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hancock R. E., Reeves P. Bacteriophage resistance in Escherichia coli K-12: general pattern of resistance. J Bacteriol. 1975 Mar;121(3):983–993. doi: 10.1128/jb.121.3.983-993.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hantke K. Phage T6--colicin K receptor and nucleoside transport in Escherichia coli. FEBS Lett. 1976 Nov;70(1):109–112. doi: 10.1016/0014-5793(76)80737-5. [DOI] [PubMed] [Google Scholar]
  18. Heine H. G., Francis G., Lee K. S., Ferenci T. Genetic analysis of sequences in maltoporin that contribute to binding domains and pore structure. J Bacteriol. 1988 Apr;170(4):1730–1738. doi: 10.1128/jb.170.4.1730-1738.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Heller K. J. Molecular interaction between bacteriophage and the gram-negative cell envelope. Arch Microbiol. 1992;158(4):235–248. doi: 10.1007/BF00245239. [DOI] [PubMed] [Google Scholar]
  20. Jeanteur D., Lakey J. H., Pattus F. The bacterial porin superfamily: sequence alignment and structure prediction. Mol Microbiol. 1991 Sep;5(9):2153–2164. doi: 10.1111/j.1365-2958.1991.tb02145.x. [DOI] [PubMed] [Google Scholar]
  21. Killmann H., Braun V. An aspartate deletion mutation defines a binding site of the multifunctional FhuA outer membrane receptor of Escherichia coli K-12. J Bacteriol. 1992 Jun;174(11):3479–3486. doi: 10.1128/jb.174.11.3479-3486.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Krieger-Brauer H. J., Braun V. Functions related to the receptor protein specified by the tsx gene of Escherichia coli. Arch Microbiol. 1980 Feb;124(2-3):233–242. doi: 10.1007/BF00427732. [DOI] [PubMed] [Google Scholar]
  23. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L. Electrophoretic resolution of the "major outer membrane protein" of Escherichia coli K12 into four bands. FEBS Lett. 1975 Oct 15;58(1):254–258. doi: 10.1016/0014-5793(75)80272-9. [DOI] [PubMed] [Google Scholar]
  24. Maier C., Bremer E., Schmid A., Benz R. Pore-forming activity of the Tsx protein from the outer membrane of Escherichia coli. Demonstration of a nucleoside-specific binding site. J Biol Chem. 1988 Feb 15;263(5):2493–2499. [PubMed] [Google Scholar]
  25. Maier C., Middendorf A., Bremer E. Analysis of a mutated phage T6 receptor protein of Escherichia coli K 12. Mol Gen Genet. 1990 May;221(3):491–494. doi: 10.1007/BF00259416. [DOI] [PubMed] [Google Scholar]
  26. Manoil C. A genetic approach to defining the sites of interaction of a membrane protein with different external agents. J Mol Biol. 1983 Sep 15;169(2):507–519. doi: 10.1016/s0022-2836(83)80063-1. [DOI] [PubMed] [Google Scholar]
  27. Misra R., Benson S. A. Genetic identification of the pore domain of the OmpC porin of Escherichia coli K-12. J Bacteriol. 1988 Aug;170(8):3611–3617. doi: 10.1128/jb.170.8.3611-3617.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Montag D., Hashemolhosseini S., Henning U. Receptor-recognizing proteins of T-even type bacteriophages. The receptor-recognizing area of proteins 37 of phages T4 TuIa and TuIb. J Mol Biol. 1990 Nov 20;216(2):327–334. doi: 10.1016/S0022-2836(05)80324-9. [DOI] [PubMed] [Google Scholar]
  29. Morona R., Krämer C., Henning U. Bacteriophage receptor area of outer membrane protein OmpA of Escherichia coli K-12. J Bacteriol. 1985 Nov;164(2):539–543. doi: 10.1128/jb.164.2.539-543.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Munch-Petersen A., Mygind B., Nicolaisen A., Pihl N. J. Nucleoside transport in cells and membrane vesicles from Escherichia coli K12. J Biol Chem. 1979 May 25;254(10):3730–3737. [PubMed] [Google Scholar]
  31. Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
  32. Pierce J. C., Kong D., Masker W. The effect of the length of direct repeats and the presence of palindromes on deletion between directly repeated DNA sequences in bacteriophage T7. Nucleic Acids Res. 1991 Jul 25;19(14):3901–3905. doi: 10.1093/nar/19.14.3901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pugsley A. P. Escherichia coli K12 strains for use in the identification and characterization of colicins. J Gen Microbiol. 1985 Feb;131(2):369–376. doi: 10.1099/00221287-131-2-369. [DOI] [PubMed] [Google Scholar]
  34. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Singer M., Baker T. A., Schnitzler G., Deischel S. M., Goel M., Dove W., Jaacks K. J., Grossman A. D., Erickson J. W., Gross C. A. A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev. 1989 Mar;53(1):1–24. doi: 10.1128/mr.53.1.1-24.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Struyvé M., Moons M., Tommassen J. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol. 1991 Mar 5;218(1):141–148. doi: 10.1016/0022-2836(91)90880-f. [DOI] [PubMed] [Google Scholar]
  37. Van der Ley P., Bekkers A., Van Meersbergen J., Tommassen J. A comparative study on the phoE genes of three enterobacterial species. Implications for structure-function relationships in a pore-forming protein of the outer membrane. Eur J Biochem. 1987 Apr 15;164(2):469–475. doi: 10.1111/j.1432-1033.1987.tb11080.x. [DOI] [PubMed] [Google Scholar]
  38. Weston-Hafer K., Berg D. E. Specificity of deletion events in pBR322. Plasmid. 1989 May;21(3):251–253. doi: 10.1016/0147-619x(89)90050-4. [DOI] [PubMed] [Google Scholar]
  39. Zieg J., Kolter R. The right end of MudI(Ap,lac). Arch Microbiol. 1989;153(1):1–6. doi: 10.1007/BF00277532. [DOI] [PubMed] [Google Scholar]
  40. van der Ley P., Burm P., Agterberg M., van Meersbergen J., Tommassen J. Analysis of structure-function relationships in Escherichia coli K12 outer membrane porins with the aid of ompC-phoE and phoE-ompC hybrid genes. Mol Gen Genet. 1987 Oct;209(3):585–591. doi: 10.1007/BF00331167. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES