Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 May;175(10):2988–2993. doi: 10.1128/jb.175.10.2988-2993.1993

Comparison of lipids A of several Salmonella and Escherichia strains by 252Cf plasma desorption mass spectrometry.

D Karibian 1, C Deprun 1, M Caroff 1
PMCID: PMC204617  PMID: 8491718

Abstract

Plasma desorption mass spectrometry has recently been used with success to characterize underivatized lipid A preparations: the major molecular species present give signals indicating their masses, from which probable compositions could be inferred by using the overall composition determined by chemical analyses. In the present study, plasma desorption mass spectrometry was used to compare structures in lipid A preparations isolated from several smooth and rough strains of Escherichia and Salmonella species. Preparations isolated from strains of both genera revealed considerable variation in degree of heterogeneity (number of fatty acids and presence or absence of hexadecanoic acid, phosphorylethanolamine, and aminoarabinose). Molecular species usually associated with Salmonella lipid A were found in preparations from Escherichia sp. In addition, preparations from three different batches of lipid A from one strain of Salmonella minnesota showed significant differences in composition. These results demonstrate that preparations used for biological and structural analyses should be defined in terms of their particular molecular constituents and that no generalizations based on analysis of a single preparation should be made.

Full text

PDF
2988

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltzer L. H., Mattsby-Baltzer I. Heterogeneity of lipid A: structural determination by 13C and 31P NMR of lipid A fractions from lipopolysaccharide of Escherichia coli 0111. Biochemistry. 1986 Jun 17;25(12):3570–3575. doi: 10.1021/bi00360a015. [DOI] [PubMed] [Google Scholar]
  2. Caroff M., Deprun C., Karibian D., Szabó L. Analysis of unmodified endotoxin preparations by 252Cf plasma desorption mass spectrometry. Determination of molecular masses of the constituent native lipopolysaccharides. J Biol Chem. 1991 Oct 5;266(28):18543–18549. [PubMed] [Google Scholar]
  3. Caroff M., Tacken A., Szabó L. Detergent-accelerated hydrolysis of bacterial endotoxins and determination of the anomeric configuration of the glycosyl phosphate present in the "isolated lipid A" fragment of the Bordetella pertussis endotoxin. Carbohydr Res. 1988 Apr 15;175(2):273–282. doi: 10.1016/0008-6215(88)84149-1. [DOI] [PubMed] [Google Scholar]
  4. Flad H. D., Loppnow H., Feist W., Wang M. H., Brade H., Kusumoto S., Rietschel E. T., Ulmer A. J. Interleukin 1 and tumor necrosis factor: studies on the induction by lipopolysaccharide partial structures. Lymphokine Res. 1989 Fall;8(3):235–238. [PubMed] [Google Scholar]
  5. Galanos C., Hansen-Hagge T., Lehmann V., Lüderitz O. Comparison of the capacity of two lipid A precursor molecules to express the local Shwartzman phenomenon. Infect Immun. 1985 May;48(2):355–358. doi: 10.1128/iai.48.2.355-358.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Galanos C., Lüderitz O., Freudenberg M., Brade L., Schade U., Rietschel E. T., Kusumoto S., Shiba T. Biological activity of synthetic heptaacyl lipid A representing a component of Salmonella minnesota R595 lipid A. Eur J Biochem. 1986 Oct 1;160(1):55–59. doi: 10.1111/j.1432-1033.1986.tb09939.x. [DOI] [PubMed] [Google Scholar]
  7. Galanos C., Lüderitz O., Rietschel E. T., Westphal O., Brade H., Brade L., Freudenberg M., Schade U., Imoto M., Yoshimura H. Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities. Eur J Biochem. 1985 Apr 1;148(1):1–5. doi: 10.1111/j.1432-1033.1985.tb08798.x. [DOI] [PubMed] [Google Scholar]
  8. Gmeiner J., Martin H. H. Phospholipid and lipopolysaccharide in Proteus mirabilis and its stable protoplast L-form. Difference in content and fatty acid composition. Eur J Biochem. 1976 Aug 16;67(2):487–494. doi: 10.1111/j.1432-1033.1976.tb10714.x. [DOI] [PubMed] [Google Scholar]
  9. Haeffner N., Chaby R., Szabó L. Identification of 2-methyl-3-hydroxydecanoic and 2-methyl-3-hydroxytetradecanoic acids in the 'lipid X' fraction of the Bordetella pertussis endotoxin. Eur J Biochem. 1977 Aug 1;77(3):535–544. doi: 10.1111/j.1432-1033.1977.tb11696.x. [DOI] [PubMed] [Google Scholar]
  10. Hara H., Cotter R. J. Assessment of the effect of growth temperature on the lipid composition of Serratia marcescens using laser desorption mass spectrometry. Rapid Commun Mass Spectrom. 1987 Nov-Dec;1(7-8):103–104. doi: 10.1002/rcm.1290010702. [DOI] [PubMed] [Google Scholar]
  11. Helander I. M., Hirvas L., Tuominen J., Vaara M. Preferential synthesis of heptaacyl lipopolysaccharide by the ssc permeability mutant of Salmonella typhimurium. Eur J Biochem. 1992 Mar 15;204(3):1101–1106. doi: 10.1111/j.1432-1033.1992.tb16734.x. [DOI] [PubMed] [Google Scholar]
  12. Jiao B. H., Freudenberg M., Galanos C. Characterization of the lipid A component of genuine smooth-form lipopolysaccharide. Eur J Biochem. 1989 Apr 1;180(3):515–518. doi: 10.1111/j.1432-1033.1989.tb14676.x. [DOI] [PubMed] [Google Scholar]
  13. Lehmann V., Rupprecht E. Microheterogeneity in lipid A demonstrated by a new intermediate in the biosynthesis of 3-deozy-D-manno-octulosonic-acid--lipid A. Eur J Biochem. 1977 Dec;81(3):443–452. doi: 10.1111/j.1432-1033.1977.tb11969.x. [DOI] [PubMed] [Google Scholar]
  14. Raetz C. R. Biochemistry of endotoxins. Annu Rev Biochem. 1990;59:129–170. doi: 10.1146/annurev.bi.59.070190.001021. [DOI] [PubMed] [Google Scholar]
  15. Rottem S., Markowitz O., Razin S. Thermal regulation of the fatty acid composition of lipopolysaccharides and phospholipids of Proteus mirabilis. Eur J Biochem. 1978 Apr 17;85(2):445–450. doi: 10.1111/j.1432-1033.1978.tb12258.x. [DOI] [PubMed] [Google Scholar]
  16. Seid R. C., Jr, Bone W. M., Phillips L. R. Identification of ester-linked fatty acids of bacterial endotoxins by negative ion fast atom bombardment mass spectrometry. Anal Biochem. 1986 May 15;155(1):168–176. doi: 10.1016/0003-2697(86)90242-3. [DOI] [PubMed] [Google Scholar]
  17. Seydel U., Lindner B., Wollenweber H. W., Rietschel E. T. Structural studies on the lipid A component of enterobacterial lipopolysaccharides by laser desorption mass spectrometry. Location of acyl groups at the lipid A backbone. Eur J Biochem. 1984 Dec 17;145(3):505–509. doi: 10.1111/j.1432-1033.1984.tb08585.x. [DOI] [PubMed] [Google Scholar]
  18. Takada H., Kotani S. Structural requirements of lipid A for endotoxicity and other biological activities. Crit Rev Microbiol. 1989;16(6):477–523. doi: 10.3109/10408418909104475. [DOI] [PubMed] [Google Scholar]
  19. Vaara M., Vaara T., Jensen M., Helander I., Nurminen M., Rietschel E. T., Mäkelä P. H. Characterization of the lipopolysaccharide from the polymyxin-resistant pmrA mutants of Salmonella typhimurium. FEBS Lett. 1981 Jun 29;129(1):145–149. doi: 10.1016/0014-5793(81)80777-6. [DOI] [PubMed] [Google Scholar]
  20. Van Alphen L., Lugtenberg B., Rietschel E. T., Mombers C. Architecture of the outer membrane of Escherichia coli K12. Phase transitions of the bacteriophage K3 receptor complex. Eur J Biochem. 1979 Nov;101(2):571–579. doi: 10.1111/j.1432-1033.1979.tb19752.x. [DOI] [PubMed] [Google Scholar]
  21. Wollenweber H. W., Schlecht S., Lüderitz O., Rietschel E. T. Fatty acid in lipopolysaccharides of Salmonella species grown at low temperature. Identification and position. Eur J Biochem. 1983 Jan 17;130(1):167–171. doi: 10.1111/j.1432-1033.1983.tb07132.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES