Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Jun;175(12):3723–3729. doi: 10.1128/jb.175.12.3723-3729.1993

Thiolactomycin resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB.

H Furukawa 1, J T Tsay 1, S Jackowski 1, Y Takamura 1, C O Rock 1
PMCID: PMC204787  PMID: 8509326

Abstract

Thiolactomycin (TLM) and cerulenin are antibiotics that block Escherichia coli growth by inhibiting fatty acid biosynthesis at the beta-ketoacyl-acyl carrier protein synthase I step. Both TLM and cerulenin trigger the accumulation of intracellular malonyl-coenzyme A coincident with growth inhibition, and the overexpression of synthase I protein confers resistance to both antibiotics. Strain CDM5 was derived as a TLM-resistant mutant but remained sensitive to cerulenin. TLM neither induced malonyl-coenzyme A accumulation nor blocked fatty acid production in vivo; however, the fatty acid synthase activity in extracts from strain CDM5 was sensitive to TLM inhibition. The TLM resistance gene in strain CDM5 was mapped to 57.5 min of the chromosome and was an allele of the emrB gene. Disruption of the emrB gene converted strain CDM5 to a TLM-sensitive strain, and the overexpression of the emrAB operon conferred TLM resistance to sensitive strains. Thus, activation of the emr efflux pump is the mechanism for TLM resistance in strain CDM5.

Full text

PDF
3723

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apontoweil P., Berends W. Isolation and initial characterization of glutathione-deficient mutants of Escherichia coli K 12. Biochim Biophys Acta. 1975 Jul 14;399(1):10–22. doi: 10.1016/0304-4165(75)90206-8. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Booth B. R. Cell surface proteins of E. coli. Biochem Biophys Res Commun. 1980 Jun 30;94(4):1029–1036. doi: 10.1016/0006-291x(80)90522-7. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. D'Agnolo G., Rosenfeld I. S., Awaya J., Omura S., Vagelos P. R. Inhibition of fatty acid synthesis by the antibiotic cerulenin. Specific inactivation of beta-ketoacyl-acyl carrier protein synthetase. Biochim Biophys Acta. 1973 Nov 29;326(2):155–156. doi: 10.1016/0005-2760(73)90241-5. [DOI] [PubMed] [Google Scholar]
  6. DeBuysere M. S., Olson M. S. The analysis of acyl-coenzyme A derivatives by reverse-phase high-performance liquid chromatography. Anal Biochem. 1983 Sep;133(2):373–379. doi: 10.1016/0003-2697(83)90097-0. [DOI] [PubMed] [Google Scholar]
  7. Garwin J. L., Klages A. L., Cronan J. E., Jr Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem. 1980 Apr 25;255(8):3263–3265. [PubMed] [Google Scholar]
  8. Garwin J. L., Klages A. L., Cronan J. E., Jr Structural, enzymatic, and genetic studies of beta-ketoacyl-acyl carrier protein synthases I and II of Escherichia coli. J Biol Chem. 1980 Dec 25;255(24):11949–11956. [PubMed] [Google Scholar]
  9. Gelmann E. P., Cronan J. E., Jr Mutant of Escherichia coli deficient in the synthesis of cis-vaccenic acid. J Bacteriol. 1972 Oct;112(1):381–387. doi: 10.1128/jb.112.1.381-387.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hayashi T., Yamamoto O., Sasaki H., Kawaguchi A., Okazaki H. Mechanism of action of the antibiotic thiolactomycin inhibition of fatty acid synthesis of Escherichia coli. Biochem Biophys Res Commun. 1983 Sep 30;115(3):1108–1113. doi: 10.1016/s0006-291x(83)80050-3. [DOI] [PubMed] [Google Scholar]
  11. Hayashi T., Yamamoto O., Sasaki H., Okazaki H., Kawaguchi A. Inhibition of fatty acid synthesis by the antibiotic thiolactomycin. J Antibiot (Tokyo) 1984 Nov;37(11):1456–1461. doi: 10.7164/antibiotics.37.1456. [DOI] [PubMed] [Google Scholar]
  12. Jackowski S., Murphy C. M., Cronan J. E., Jr, Rock C. O. Acetoacetyl-acyl carrier protein synthase. A target for the antibiotic thiolactomycin. J Biol Chem. 1989 May 5;264(13):7624–7629. [PubMed] [Google Scholar]
  13. Jackowski S., Rock C. O. Acetoacetyl-acyl carrier protein synthase, a potential regulator of fatty acid biosynthesis in bacteria. J Biol Chem. 1987 Jun 5;262(16):7927–7931. [PubMed] [Google Scholar]
  14. Jackowski S., Rock C. O. Regulation of coenzyme A biosynthesis. J Bacteriol. 1981 Dec;148(3):926–932. doi: 10.1128/jb.148.3.926-932.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kauppinen S., Siggaard-Andersen M., von Wettstein-Knowles P. beta-Ketoacyl-ACP synthase I of Escherichia coli: nucleotide sequence of the fabB gene and identification of the cerulenin binding residue. Carlsberg Res Commun. 1988;53(6):357–370. doi: 10.1007/BF02983311. [DOI] [PubMed] [Google Scholar]
  16. Lomovskaya O., Lewis K. Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8938–8942. doi: 10.1073/pnas.89.19.8938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miyakawa S., Suzuki K., Noto T., Harada Y., Okazaki H. Thiolactomycin, a new antibiotic. IV. Biological properties and chemotherapeutic activity in mice. J Antibiot (Tokyo) 1982 Apr;35(4):411–419. doi: 10.7164/antibiotics.35.411. [DOI] [PubMed] [Google Scholar]
  18. Nishida I., Kawaguchi A., Yamada M. Effect of thiolactomycin on the individual enzymes of the fatty acid synthase system in Escherichia coli. J Biochem. 1986 May;99(5):1447–1454. doi: 10.1093/oxfordjournals.jbchem.a135614. [DOI] [PubMed] [Google Scholar]
  19. Noto T., Miyakawa S., Oishi H., Endo H., Okazaki H. Thiolactomycin, a new antibiotic. III. In vitro antibacterial activity. J Antibiot (Tokyo) 1982 Apr;35(4):401–410. doi: 10.7164/antibiotics.35.401. [DOI] [PubMed] [Google Scholar]
  20. Oishi H., Noto T., Sasaki H., Suzuki K., Hayashi T., Okazaki H., Ando K., Sawada M. Thiolactomycin, a new antibiotic. I. Taxonomy of the producing organism, fermentation and biological properties. J Antibiot (Tokyo) 1982 Apr;35(4):391–395. doi: 10.7164/antibiotics.35.391. [DOI] [PubMed] [Google Scholar]
  21. Rock C. O., Cronan J. E., Jr Improved purification of acyl carrier protein. Anal Biochem. 1980 Mar 1;102(2):362–364. doi: 10.1016/0003-2697(80)90168-2. [DOI] [PubMed] [Google Scholar]
  22. Rosenfeld I. S., D'Agnolo G., Vagelos P. R. Synthesis of unsaturated fatty acids and the lesion in fab B mutants. J Biol Chem. 1973 Apr 10;248(7):2452–2460. [PubMed] [Google Scholar]
  23. Rouch D. A., Cram D. S., DiBerardino D., Littlejohn T. G., Skurray R. A. Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol Microbiol. 1990 Dec;4(12):2051–2062. doi: 10.1111/j.1365-2958.1990.tb00565.x. [DOI] [PubMed] [Google Scholar]
  24. Sasaki H., Oishi H., Hayashi T., Matsuura I., Ando K., Sawada M. Thiolactomycin, a new antibiotic. II. Structure elucidation. J Antibiot (Tokyo) 1982 Apr;35(4):396–400. doi: 10.7164/antibiotics.35.396. [DOI] [PubMed] [Google Scholar]
  25. Takamura Y., Kitayama Y., Arakawa A., Yamanaka S., Tosaki M., Ogawa Y. Malonyl-CoA: acetyl-CoA cycling. A new micromethod for determination of acyl-CoAs with malonate decarboxylase. Biochim Biophys Acta. 1985 Mar 27;834(1):1–7. doi: 10.1016/0005-2760(85)90170-5. [DOI] [PubMed] [Google Scholar]
  26. Tsay J. T., Oh W., Larson T. J., Jackowski S., Rock C. O. Isolation and characterization of the beta-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J Biol Chem. 1992 Apr 5;267(10):6807–6814. [PubMed] [Google Scholar]
  27. Tsay J. T., Rock C. O., Jackowski S. Overproduction of beta-ketoacyl-acyl carrier protein synthase I imparts thiolactomycin resistance to Escherichia coli K-12. J Bacteriol. 1992 Jan;174(2):508–513. doi: 10.1128/jb.174.2.508-513.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vallari D. S., Jackowski S., Rock C. O. Regulation of pantothenate kinase by coenzyme A and its thioesters. J Biol Chem. 1987 Feb 25;262(6):2468–2471. [PubMed] [Google Scholar]
  29. Vance D., Goldberg I., Mitsuhashi O., Bloch K. Inhibition of fatty acid synthetases by the antibiotic cerulenin. Biochem Biophys Res Commun. 1972 Aug 7;48(3):649–656. doi: 10.1016/0006-291x(72)90397-x. [DOI] [PubMed] [Google Scholar]
  30. Wanner B. L. Novel regulatory mutants of the phosphate regulon in Escherichia coli K-12. J Mol Biol. 1986 Sep 5;191(1):39–58. doi: 10.1016/0022-2836(86)90421-3. [DOI] [PubMed] [Google Scholar]
  31. Winkler H. H., Wilson T. H. The role of energy coupling in the transport of beta-galactosides by Escherichia coli. J Biol Chem. 1966 May 25;241(10):2200–2211. [PubMed] [Google Scholar]
  32. Yamaguchi A., Ono N., Akasaka T., Noumi T., Sawai T. Metal-tetracycline/H+ antiporter of Escherichia coli encoded by a transposon, Tn10. The role of the conserved dipeptide, Ser65-Asp66, in tetracycline transport. J Biol Chem. 1990 Sep 15;265(26):15525–15530. [PubMed] [Google Scholar]
  33. de Mendoza D., Klages Ulrich A., Cronan J. E., Jr Thermal regulation of membrane fluidity in Escherichia coli. Effects of overproduction of beta-ketoacyl-acyl carrier protein synthase I. J Biol Chem. 1983 Feb 25;258(4):2098–2101. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES