Abstract
Protocatechuate 2,3-dioxygenase (2,3-PCD) from Bacillus macerans JJ1b has been purified to homogeneity for the first time. The enzyme catalyzes proximal extradiol ring cleavage of protocatechuate (PCA) with the attendant incorporation of both atoms of oxygen from O2. The holoenzyme has a mass of 143 +/- 7 kDa as determined by ultracentrifugation and other techniques. It is composed of four apparently identical subunits with M(r)s of 35,500, each containing one iron atom. Mössbauer spectroscopy of 57Fe-enriched enzyme showed that the irons are indistinguishable and are high spin (S = 2) Fe2+ in both the uncomplexed and substrate-bound enzyme. However, the quadrupole splitting, delta EQ, and isomer shift, delta, of the Mössbauer spectrum changed from delta EQ = 2.57 mm/s and delta = 1.29 mm/s to delta EQ = 2.73 mm/s and delta = 1.19 mm/s upon PCA binding to the enzyme, showing that the iron environment is altered when substrate is present. The enzyme was also found to bind variable and substoichiometric amounts of Mn2+, but this metal could be removed without loss of activity or stability. The inherently electron paramagnetic resonance (EPR)-silent Fe2+ of the enzyme reversibly bound nitric oxide to produce an EPR-active species (g = 4.11, 3.95; S = 3/2). The specific activity of the enzyme was found to be correlated with the amount of the S = 3/2 species formed, showing that activity is dependent on Fe2+. Anaerobic addition of substrates to the enzyme-nitric oxide complex significantly altered the EPR spectrum, suggesting that substrates bind to or near the iron. The enzyme was inactivated by reagents that oxidize the Fe2+, such as H2O2 and K3FE(CN)6; full activity was restored after reduction of the iron by ascorbate. Steady-state kinetic data were found to be consistent with an ordered bi-uni mechanism in which the organic substrate must add to 2,3-PCD before O2. The enzyme has the broadest substrate range of any of the well-studied catecholic dioxygenases. All substrates have vicinal hydroxyl groups on the aromatic ring except 4-NH2-3-hydroxybenzoate. This is the first substrate lacking vicinal hydroxyl groups reported for catecholic extradiol dioxygenases. 2,3-PCD is the final member of the PCA dioxygenase family to be purified. It is compared with other members of this family as well as other catecholic dioxygenases.
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADACHI K., TAKEDA Y., SENOH S., KITA H. METABOLISM OF P-HYDROXYPHENYLACETIC ACID IN PSEUDOMONAS OVALIS. Biochim Biophys Acta. 1964 Dec 9;93:483–493. doi: 10.1016/0304-4165(64)90332-0. [DOI] [PubMed] [Google Scholar]
- Arciero D. M., Lipscomb J. D. Binding of 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase-nitrosyl complex. Evidence for direct substrate binding to the active site Fe2+ of extradiol dioxygenases. J Biol Chem. 1986 Feb 15;261(5):2170–2178. [PubMed] [Google Scholar]
- Arciero D. M., Lipscomb J. D., Huynh B. H., Kent T. A., Münck E. EPR and Mössbauer studies of protocatechuate 4,5-dioxygenase. Characterization of a new Fe2+ environment. J Biol Chem. 1983 Dec 25;258(24):14981–14991. [PubMed] [Google Scholar]
- Arciero D. M., Orville A. M., Lipscomb J. D. [17O]Water and nitric oxide binding by protocatechuate 4,5-dioxygenase and catechol 2,3-dioxygenase. Evidence for binding of exogenous ligands to the active site Fe2+ of extradiol dioxygenases. J Biol Chem. 1985 Nov 15;260(26):14035–14044. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Broderick J. B., O'Halloran T. V. Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry. 1991 Jul 23;30(29):7349–7358. doi: 10.1021/bi00243a040. [DOI] [PubMed] [Google Scholar]
- Bull C., Ballou D. P. Purification and properties of protocatechuate 3,4-dioxygenase from Pseudomonas putida. A new iron to subunit stoichiometry. J Biol Chem. 1981 Dec 25;256(24):12673–12680. [PubMed] [Google Scholar]
- Crawford R. L., Bromley J. W., Perkins-Olson P. E. Catabolism of protocatechuate by Bacillus macerans. Appl Environ Microbiol. 1979 Mar;37(3):614–618. doi: 10.1128/aem.37.3.614-618.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford R. L. Novel pathway for degradation of protocatechuic acid in Bacillus species. J Bacteriol. 1975 Feb;121(2):531–536. doi: 10.1128/jb.121.2.531-536.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford R. L. Pathways of 4-hydroxybenzoate degradation among species of Bacillus. J Bacteriol. 1976 Jul;127(1):204–210. doi: 10.1128/jb.127.1.204-210.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAGLEY S., PATEL M. D. Oxidation of p-cresol and related compounds by a Pseudomonas. Biochem J. 1957 Jun;66(2):227–233. doi: 10.1042/bj0660227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dagley S., Geary P. J., Wood J. M. The metabolism of protocatechuate by Pseudomonas testosteroni. Biochem J. 1968 Oct;109(4):559–568. doi: 10.1042/bj1090559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durham D. R., Stirling L. A., Ornston L. N., Perry J. J. Intergeneric evolutionary homology revealed by the study of protocatechuate 3,4-dioxygenase from Azotobacter vinelandii. Biochemistry. 1980 Jan 8;19(1):149–155. doi: 10.1021/bi00542a023. [DOI] [PubMed] [Google Scholar]
- Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
- Fox B. G., Froland W. A., Dege J. E., Lipscomb J. D. Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a type II methanotroph. J Biol Chem. 1989 Jun 15;264(17):10023–10033. [PubMed] [Google Scholar]
- Fujisawa H., Hayaishi O. Protocatechuate 3,4-dioxygenase. I. Crystallization and characterization. J Biol Chem. 1968 May 25;243(10):2673–2681. [PubMed] [Google Scholar]
- Fujisawa H., Uyeda M., Kojima Y., Nozaki M., Hayaishi O. Protocatechuate 3,4-dioxygenase. II. Electron spin resonance and spectral studies on interaction of substrates and enzyme. J Biol Chem. 1972 Jul 10;247(13):4414–4421. [PubMed] [Google Scholar]
- Fujiwara M., Nozaki M. Protocatechuate 3,4-dioxygenase. IV. Preparation and properties of apo- and reconstituted enzymes. Biochim Biophys Acta. 1973 Dec 19;327(2):306–312. doi: 10.1016/0005-2744(73)90413-0. [DOI] [PubMed] [Google Scholar]
- Harpel M. R., Lipscomb J. D. Gentisate 1,2-dioxygenase from Pseudomonas. Substrate coordination to active site Fe2+ and mechanism of turnover. J Biol Chem. 1990 Dec 25;265(36):22187–22196. [PubMed] [Google Scholar]
- Harpel M. R., Lipscomb J. D. Gentisate 1,2-dioxygenase from pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans. J Biol Chem. 1990 Apr 15;265(11):6301–6311. [PubMed] [Google Scholar]
- Hori K., Hashimoto T., Nozaki M. Kinetic studies on the reaction mechanism of dioxygenases. J Biochem. 1973 Aug;74(2):375–384. [PubMed] [Google Scholar]
- KOJIMA Y., ITADA N., HAYAISHI O. Metapyrocatachase: a new catechol-cleaving enzyme. J Biol Chem. 1961 Aug;236:2223–2228. [PubMed] [Google Scholar]
- Kojima Y., Fujisawa H., Nakazawa A., Nakazawa T., Kanetsuna F., Taniuchi H., Nozaki M., Hayaishi O. Studies on pyrocatechase. I. Purification and spectral properties. J Biol Chem. 1967 Jul 25;242(14):3270–3278. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lumsden J., Cammack R., Hall D. O. Purification and physicochemical properties of superoxide dismutase from two photosynthetic microorganisms. Biochim Biophys Acta. 1976 Jul 8;438(2):380–392. doi: 10.1016/0005-2744(76)90255-2. [DOI] [PubMed] [Google Scholar]
- Lundell D. J., Howard J. B. Isolation and partial characterization of two different subunits from the molybdenum-iron protein of Azotobacter vinelandii nitrogenase. J Biol Chem. 1978 May 25;253(10):3422–3426. [PubMed] [Google Scholar]
- Münck E. Mössbauer spectroscopy of proteins: electron carriers. Methods Enzymol. 1978;54:346–379. doi: 10.1016/s0076-6879(78)54023-8. [DOI] [PubMed] [Google Scholar]
- Münck E., Rhodes H., Orme-Johnson W. H., Davis L. C., Brill W. J., Shah V. K. Nitrogenase. VIII. Mössbauer and EPR spectroscopy. The MoFe protein component from Azotobacter vinelandii OP. Biochim Biophys Acta. 1975 Jul 21;400(1):32–53. doi: 10.1016/0005-2795(75)90124-5. [DOI] [PubMed] [Google Scholar]
- NOZAKI M., KAGAMIYAMA H., HAYAISHI O. METAPYROCATECHASE. I. PURIFICATION, CRYSTALLIZATION AND SOME PROPERTIES. Biochem Z. 1963;338:582–590. [PubMed] [Google Scholar]
- Nakai C., Horiike K., Kuramitsu S., Kagamiyama H., Nozaki M. Three isozymes of catechol 1,2-dioxygenase (pyrocatechase), alpha alpha, alpha beta, and beta beta, from Pseudomonas arvilla C-1. J Biol Chem. 1990 Jan 15;265(2):660–665. [PubMed] [Google Scholar]
- Nakai C., Kagamiyama H., Nozaki M., Nakazawa T., Inouye S., Ebina Y., Nakazawa A. Complete nucleotide sequence of the metapyrocatechase gene on the TOI plasmid of Pseudomonas putida mt-2. J Biol Chem. 1983 Mar 10;258(5):2923–2928. [PubMed] [Google Scholar]
- Noda Y., Nishikawa S., Shiozuka K., Kadokura H., Nakajima H., Yoda K., Katayama Y., Morohoshi N., Haraguchi T., Yamasaki M. Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis. J Bacteriol. 1990 May;172(5):2704–2709. doi: 10.1128/jb.172.5.2704-2709.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nozaki M., Kotani S., Ono K., Seno S. Metapyrocatechase. 3. Substrate specificity and mode of ring fission. Biochim Biophys Acta. 1970 Nov 11;220(2):213–223. doi: 10.1016/0005-2744(70)90007-0. [DOI] [PubMed] [Google Scholar]
- Nozaki M., Ono K., Nakazawa T., Kotani S., Hayaishi O. Metapyrocatechase. II. The role of iron and sulfhydryl groups. J Biol Chem. 1968 May 25;243(10):2682–2690. [PubMed] [Google Scholar]
- Ohlendorf D. H., Lipscomb J. D., Weber P. C. Structure and assembly of protocatechuate 3,4-dioxygenase. Nature. 1988 Nov 24;336(6197):403–405. doi: 10.1038/336403a0. [DOI] [PubMed] [Google Scholar]
- Ohlendorf D. H., Weber P. C., Lipscomb J. D. Determination of the quaternary structure of protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa. J Mol Biol. 1987 May 5;195(1):225–227. doi: 10.1016/0022-2836(87)90340-8. [DOI] [PubMed] [Google Scholar]
- Olson P. E., Qi B., Que L., Jr, Wackett L. P. Immunological demonstration of a unique 3,4-dihydroxyphenylacetate 2,3-dioxygenase in soil Arthrobacter strains. Appl Environ Microbiol. 1992 Sep;58(9):2820–2826. doi: 10.1128/aem.58.9.2820-2826.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ono-Kamimoto M. Studies on 3,4-dihydroxyphenylacetate 2,3-dioxygenase. I. Role of iron, substrate binding, and some other properties. J Biochem. 1973 Nov;74(5):1049–1059. [PubMed] [Google Scholar]
- Ono K., Nozaki M., Hayaishi O. Purification and some properties of protocatechuate 4,5-dioxygenase. Biochim Biophys Acta. 1970 Nov 11;220(2):224–238. doi: 10.1016/0005-2744(70)90008-2. [DOI] [PubMed] [Google Scholar]
- Orville A. M., Chen V. J., Kriauciunas A., Harpel M. R., Fox B. G., Münck E., Lipscomb J. D. Thiolate ligation of the active site Fe2+ of isopenicillin N synthase derives from substrate rather than endogenous cysteine: spectroscopic studies of site-specific Cys----Ser mutated enzymes. Biochemistry. 1992 May 19;31(19):4602–4612. doi: 10.1021/bi00134a010. [DOI] [PubMed] [Google Scholar]
- Orville A. M., Lipscomb J. D. Binding of isotopically labeled substrates, inhibitors, and cyanide by protocatechuate 3,4-dioxygenase. J Biol Chem. 1989 May 25;264(15):8791–8801. [PubMed] [Google Scholar]
- Orville A. M., Lipscomb J. D. Simultaneous binding of nitric oxide and isotopically labeled substrates or inhibitors by reduced protocatechuate 3,4-dioxygenase. J Biol Chem. 1993 Apr 25;268(12):8596–8607. [PubMed] [Google Scholar]
- Que L., Jr, Lipscomb J. D., Münck E., Wood J. M. Protocatechuate 3,4-dioxygenase. Inhibitor studies and mechanistic implications. Biochim Biophys Acta. 1977 Nov 23;485(1):60–74. doi: 10.1016/0005-2744(77)90193-0. [DOI] [PubMed] [Google Scholar]
- Que L., Jr, Lipscomb J. D., Zimmermann R., Münck E., Orme-Johnson N. R., Orme-Johnson W. H. Mössbauer and EPR spectroscopy of protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa. Biochim Biophys Acta. 1976 Dec 8;452(2):320–334. doi: 10.1016/0005-2744(76)90182-0. [DOI] [PubMed] [Google Scholar]
- Que L., Jr, Widom J., Crawford R. L. 3,4-Dihydroxyphenylacetate 2,3-dioxygenase. A manganese(II) dioxygenase from Bacillus brevis. J Biol Chem. 1981 Nov 10;256(21):10941–10944. [PubMed] [Google Scholar]
- STANIER R. Y., INGRAHAM J. L. Protocatechuic acid oxidase. J Biol Chem. 1954 Oct;210(2):799–808. [PubMed] [Google Scholar]
- Salerno J. C., Siedow J. N. The nature of the nitric oxide complexes of lipoxygenase. Biochim Biophys Acta. 1979 Jul 25;579(1):246–251. doi: 10.1016/0005-2795(79)90104-1. [DOI] [PubMed] [Google Scholar]
- Satyshur K. A., Rao S. T., Lipscomb J. D., Wood J. M. Preliminary crystallographic study of protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa. J Biol Chem. 1980 Nov 10;255(21):10015–10016. [PubMed] [Google Scholar]
- Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
- Tatsuno Y., Saeki Y., Nozaki M., Otsuka S., Maeda Y. Mössbauer spectra of metapyrocatechase. FEBS Lett. 1980 Mar 24;112(1):83–85. doi: 10.1016/0014-5793(80)80133-5. [DOI] [PubMed] [Google Scholar]
- Weisiger R. A., Fridovich I. Superoxide dismutase. Organelle specificity. J Biol Chem. 1973 May 25;248(10):3582–3592. [PubMed] [Google Scholar]
- Whittaker J. W., Lipscomb J. D. 17O-water and cyanide ligation by the active site iron of protocatechuate 3,4-dioxygenase. Evidence for displaceable ligands in the native enzyme and in complexes with inhibitors or transition state analogs. J Biol Chem. 1984 Apr 10;259(7):4487–4495. [PubMed] [Google Scholar]
- Whittaker J. W., Lipscomb J. D., Kent T. A., Münck E. Brevibacterium fuscum protocatechuate 3,4-dioxygenase. Purification, crystallization, and characterization. J Biol Chem. 1984 Apr 10;259(7):4466–4475. [PubMed] [Google Scholar]
- Wolgel S. A., Lipscomb J. D. Protocatechuate 2,3-dioxygenase from Bacillus macerans. Methods Enzymol. 1990;188:95–101. doi: 10.1016/0076-6879(90)88018-6. [DOI] [PubMed] [Google Scholar]