Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Jul;175(14):4520–4527. doi: 10.1128/jb.175.14.4520-4527.1993

The cell-bound fructosyltransferase of Streptococcus salivarius: the carboxyl terminus specifies attachment in a Streptococcus gordonii model system.

C Rathsam 1, P M Giffard 1, N A Jacques 1
PMCID: PMC204894  PMID: 8331080

Abstract

The ftf gene, coding for the cell-bound beta-D-fructosyltransferase (FTF) of Streptococcus salivarius ATCC 25975, has been analyzed, and its deduced amino acid sequence has been compared with that of the secreted FTF of Streptococcus mutans and the levansucrases (SacBs) of Bacillus species. A unique proline-rich region detected at the C terminus of the FTF of S. salivarius preceded a hydrophobic terminal domain. This proline-rich region was shown to possess strong homology to the product of the prgC gene from pCF10 in Enterococcus faecalis, which encodes a pheromone-responsive protein of unknown function, as well as homology to the human proline-rich salivary protein PRP-4. A series of 3'-OH deletions of the S. salivarius ftf gene expressed in Streptococcus gordonii Challis LGR2 showed that the C terminus was required for cell surface attachment in this heterologous organism, as only the complete gene product was cell bound. This cell-bound activity was released in the presence of sucrose, suggesting that the mode of attachment and release of the S. salivarius FTF in S. gordonii was similar to that in its native host.

Full text

PDF
4520

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aduse-Opoku J., Gilpin M. L., Russell R. R. Genetic and antigenic comparison of Streptococcus mutans fructosyltransferase and glucan-binding protein. FEMS Microbiol Lett. 1989 Jun;50(3):279–282. doi: 10.1016/0378-1097(89)90432-1. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brendel V., Trifonov E. N. A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res. 1984 May 25;12(10):4411–4427. doi: 10.1093/nar/12.10.4411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carlsson J. A levansucrase from Streptococcus mutans. Caries Res. 1970;4(2):97–113. doi: 10.1159/000259632. [DOI] [PubMed] [Google Scholar]
  6. Chambert R., Petit-Glatron M. F. Hyperproduction of exocellular levansucrase by Bacillus subtilis: examination of the phenotype of a sacUh strain. J Gen Microbiol. 1984 Dec;130(12):3143–3152. doi: 10.1099/00221287-130-12-3143. [DOI] [PubMed] [Google Scholar]
  7. Chambert R., Petit-Glatron M. F. Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. Biochem J. 1991 Oct 1;279(Pt 1):35–41. doi: 10.1042/bj2790035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ebisu S., Kato K., Kotani S., Misaki A. Structural differences in fructans elaborated by streptococcus mutans and Strep. salivarius. J Biochem. 1975 Nov;78(5):879–887. doi: 10.1093/oxfordjournals.jbchem.a130993. [DOI] [PubMed] [Google Scholar]
  9. Ehrlich J., Stivala S. S., Bahary W. S., Garg S. K., Long L. W., Newbrun E. Levans: I. Fractionation, solution viscosity, and chemical analysis of levan produced by Streptococcus salivarius. J Dent Res. 1975 Mar-Apr;54(2):290–297. [PubMed] [Google Scholar]
  10. Fischetti V. A., Pancholi V., Schneewind O. Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol Microbiol. 1990 Sep;4(9):1603–1605. doi: 10.1111/j.1365-2958.1990.tb02072.x. [DOI] [PubMed] [Google Scholar]
  11. Fouet A., Arnaud M., Klier A., Rapoport G. Characterization of the precursor form of the exocellular levansucrase from Bacillus subtilis. Biochem Biophys Res Commun. 1984 Mar 15;119(2):795–800. doi: 10.1016/s0006-291x(84)80320-4. [DOI] [PubMed] [Google Scholar]
  12. Garszczynski S. M., Edwards J. R. Synthesis of a broth levan by a cell-bound levansucrase from Streptococcus salivarius (SS2). Arch Oral Biol. 1973 Feb;18(2):239–251. doi: 10.1016/0003-9969(73)90144-1. [DOI] [PubMed] [Google Scholar]
  13. Giffard P. M., Simpson C. L., Milward C. P., Jacques N. A. Molecular characterization of a cluster of at least two glucosyltransferase genes in Streptococcus salivarius ATCC 25975. J Gen Microbiol. 1991 Nov;137(11):2577–2593. doi: 10.1099/00221287-137-11-2577. [DOI] [PubMed] [Google Scholar]
  14. Gough J. A., Murray N. E. Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol. 1983 May 5;166(1):1–19. doi: 10.1016/s0022-2836(83)80047-3. [DOI] [PubMed] [Google Scholar]
  15. Hansson M., Ståhl S., Nguyen T. N., Bächi T., Robert A., Binz H., Sjölander A., Uhlén M. Expression of recombinant proteins on the surface of the coagulase-negative bacterium Staphylococcus xylosus. J Bacteriol. 1992 Jul;174(13):4239–4245. doi: 10.1128/jb.174.13.4239-4245.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  17. Holloway M. Neural vector. Herpes may open the way to gene therapy in neurons. Sci Am. 1991 Jan;264(1):32–32. [PubMed] [Google Scholar]
  18. Jacob A. E., Horton W. A., Drucker D. B. Genetic transformation in some cariogenic Streptococcus milleri. Microbios. 1989;60(244-245):167–175. [PubMed] [Google Scholar]
  19. Jacques N. A. Inhibition of the expression of cell-associated fructosyltransferase in Streptococcus salivarius by octyl beta-D-glucopyranoside. J Gen Microbiol. 1985 Dec;131(12):3243–3250. doi: 10.1099/00221287-131-12-3243. [DOI] [PubMed] [Google Scholar]
  20. Jacques N. A. Membrane perturbation by cerulenin modulates glucosyltransferase secretion and acetate uptake by Streptococcus salivarius. J Gen Microbiol. 1983 Nov;129(11):3293–3302. doi: 10.1099/00221287-129-11-3293. [DOI] [PubMed] [Google Scholar]
  21. Jacques N. A., Wittenberger C. L. Inactivation of cell-associated fructosyltransferase in Streptococcus salivarius. J Bacteriol. 1981 Dec;148(3):912–918. doi: 10.1128/jb.148.3.912-918.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kao S. M., Olmsted S. B., Viksnins A. S., Gallo J. C., Dunny G. M. Molecular and genetic analysis of a region of plasmid pCF10 containing positive control genes and structural genes encoding surface proteins involved in pheromone-inducible conjugation in Enterococcus faecalis. J Bacteriol. 1991 Dec;173(23):7650–7664. doi: 10.1128/jb.173.23.7650-7664.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Macrina F. L., Tobian J. A., Jones K. R., Evans R. P., Clewell D. B. A cloning vector able to replicate in Escherichia coli and Streptococcus sanguis. Gene. 1982 Oct;19(3):345–353. doi: 10.1016/0378-1119(82)90025-7. [DOI] [PubMed] [Google Scholar]
  24. Maeda N., Kim H. S., Azen E. A., Smithies O. Differential RNA splicing and post-translational cleavages in the human salivary proline-rich protein gene system. J Biol Chem. 1985 Sep 15;260(20):11123–11130. [PubMed] [Google Scholar]
  25. Milward C. P., Jacques N. A. Secretion of fructosyltransferase by Streptococcus salivarius involves the sucrose-dependent release of the cell-bound form. J Gen Microbiol. 1990 Jan;136(1):165–169. doi: 10.1099/00221287-136-1-165. [DOI] [PubMed] [Google Scholar]
  26. Murray N. E., Brammar W. J., Murray K. Lambdoid phages that simplify the recovery of in vitro recombinants. Mol Gen Genet. 1977 Jan 7;150(1):53–61. doi: 10.1007/BF02425325. [DOI] [PubMed] [Google Scholar]
  27. Petit-Glatron M. F., Monteil I., Benyahia F., Chambert R. Bacillus subtilis levansucrase: amino acid substitutions at one site affect secretion efficiency and refolding kinetics mediated by metals. Mol Microbiol. 1990 Dec;4(12):2063–2070. doi: 10.1111/j.1365-2958.1990.tb00566.x. [DOI] [PubMed] [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sato Y., Kuramitsu H. K. Sequence analysis of the Streptococcus mutans scrB gene. Infect Immun. 1988 Aug;56(8):1956–1960. doi: 10.1128/iai.56.8.1956-1960.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schneewind O., Model P., Fischetti V. A. Sorting of protein A to the staphylococcal cell wall. Cell. 1992 Jul 24;70(2):267–281. doi: 10.1016/0092-8674(92)90101-h. [DOI] [PubMed] [Google Scholar]
  31. Shiroza T., Kuramitsu H. K. Sequence analysis of the Streptococcus mutans fructosyltransferase gene and flanking regions. J Bacteriol. 1988 Feb;170(2):810–816. doi: 10.1128/jb.170.2.810-816.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tang L. B., Lenstra R., Borchert T. V., Nagarajan V. Isolation and characterization of levansucrase-encoding gene from Bacillus amyloliquefaciens. Gene. 1990 Nov 30;96(1):89–93. doi: 10.1016/0378-1119(90)90345-r. [DOI] [PubMed] [Google Scholar]
  33. Wyatt J. E., Willcox M. D., Russell R. R., Handley P. S. Fibrillar strains of Streptococcus sanguis biotype I carry a surface protein which cross-reacts with Antigen B from Streptococcus mutans Ingbritt. Oral Microbiol Immunol. 1988 Dec;3(4):162–168. doi: 10.1111/j.1399-302x.1988.tb00003.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES