Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Aug;175(15):4577–4583. doi: 10.1128/jb.175.15.4577-4583.1993

Promiscuous exoribonucleases of Escherichia coli.

M P Deutscher 1
PMCID: PMC204908  PMID: 8335617

Full text

PDF
4577

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arraiano C. M., Yancey S. D., Kushner S. R. Stabilization of discrete mRNA breakdown products in ams pnp rnb multiple mutants of Escherichia coli K-12. J Bacteriol. 1988 Oct;170(10):4625–4633. doi: 10.1128/jb.170.10.4625-4633.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asha P. K., Blouin R. T., Zaniewski R., Deutscher M. P. Ribonuclease BN: identification and partial characterization of a new tRNA processing enzyme. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3301–3304. doi: 10.1073/pnas.80.11.3301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asha P. K., Deutscher M. P. Escherichia coli CAN lacks a tRNA-processing nuclease. J Bacteriol. 1983 Oct;156(1):419–420. doi: 10.1128/jb.156.1.419-420.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bikoff E. K., LaRue B. F., Gefter M. L. In vitro synthesis of transfer RNA. II. Identification of required enzymatic activities. J Biol Chem. 1975 Aug 25;250(16):6248–6255. [PubMed] [Google Scholar]
  5. Birenbaum M., Schlessinger D., Ohnishi Y. Altered bacteriophage T4 ribonucleic acid metabolism in a ribonuclease II-deficient mutant of Escherichia coli. J Bacteriol. 1980 Apr;142(1):327–330. doi: 10.1128/jb.142.1.327-330.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonekamp F., Clemmesen K., Karlström O., Jensen K. F. Mechanism of UTP-modulated attenuation at the pyrE gene of Escherichia coli: an example of operon polarity control through the coupling of translation to transcription. EMBO J. 1984 Dec 1;3(12):2857–2861. doi: 10.1002/j.1460-2075.1984.tb02220.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bothwell A. L., Apirion D. Is RNase V a manifestation of RNase II? Biochem Biophys Res Commun. 1971 Aug 20;44(4):844–851. doi: 10.1016/0006-291x(71)90788-1. [DOI] [PubMed] [Google Scholar]
  8. Corte G., Schlessinger D., Longo D., Venkov P. Transformation of 17 s to 16 s ribosomal RNA using ribonuclease II of Escherichia coli. J Mol Biol. 1971 Sep 14;60(2):325–338. doi: 10.1016/0022-2836(71)90297-x. [DOI] [PubMed] [Google Scholar]
  9. Craven M. G., Henner D. J., Alessi D., Schauer A. T., Ost K. A., Deutscher M. P., Friedman D. I. Identification of the rph (RNase PH) gene of Bacillus subtilis: evidence for suppression of cold-sensitive mutations in Escherichia coli. J Bacteriol. 1992 Jul;174(14):4727–4735. doi: 10.1128/jb.174.14.4727-4735.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cudny H., Deutscher M. P. 3' processing of tRNA precursors in ribonuclease-deficient Escherichia coli. Development and characterization of an in vitro processing system and evidence for a phosphate requirement. J Biol Chem. 1988 Jan 25;263(3):1518–1523. [PubMed] [Google Scholar]
  11. Cudny H., Deutscher M. P. Apparent involvement of ribonuclease D in the 3' processing of tRNA precursors. Proc Natl Acad Sci U S A. 1980 Feb;77(2):837–841. doi: 10.1073/pnas.77.2.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cudny H., Roy P., Deutscher M. P. Alteration of Escherichia coli RNase D by infection with bacteriophage T4. Biochem Biophys Res Commun. 1981 Jan 15;98(1):337–345. doi: 10.1016/0006-291x(81)91908-2. [DOI] [PubMed] [Google Scholar]
  13. Cudny H., Zaniewski R., Deutscher M. P. Escherichia coli RNase D. Catalytic properties and substrate specificity. J Biol Chem. 1981 Jun 10;256(11):5633–5637. [PubMed] [Google Scholar]
  14. Datta A. K., Niyogi K. A novel oligoribonuclease of Escherichia coli. II. Mechanism of action. J Biol Chem. 1975 Sep 25;250(18):7313–7319. [PubMed] [Google Scholar]
  15. Deutscher M. P. E. coli RNases: making sense of alphabet soup. Cell. 1985 Apr;40(4):731–732. doi: 10.1016/0092-8674(85)90330-7. [DOI] [PubMed] [Google Scholar]
  16. Deutscher M. P., Ghosh R. K. Preparation of synthetic tRNA precursors with tRNA nucleotidyltransferase. Nucleic Acids Res. 1978 Oct;5(10):3821–3829. doi: 10.1093/nar/5.10.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Deutscher M. P., Lin J. J., Evans J. A. Transfer RNA metabolism in Escherichia coli cells deficient in tRNA nucleotidyltransferase. J Mol Biol. 1977 Dec 25;117(4):1081–1094. doi: 10.1016/s0022-2836(77)80014-4. [DOI] [PubMed] [Google Scholar]
  18. Deutscher M. P., Marlor C. W. Purification and characterization of Escherichia coli RNase T. J Biol Chem. 1985 Jun 10;260(11):7067–7071. [PubMed] [Google Scholar]
  19. Deutscher M. P., Marlor C. W., Zaniewski R. RNase T is responsible for the end-turnover of tRNA in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6427–6430. doi: 10.1073/pnas.82.19.6427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Deutscher M. P., Marlor C. W., Zaniewski R. Ribonuclease T: new exoribonuclease possibly involved in end-turnover of tRNA. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4290–4293. doi: 10.1073/pnas.81.14.4290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Deutscher M. P., Marshall G. T., Cudny H. RNase PH: an Escherichia coli phosphate-dependent nuclease distinct from polynucleotide phosphorylase. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4710–4714. doi: 10.1073/pnas.85.13.4710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Deutscher M. P. Processing of tRNA in prokaryotes and eukaryotes. CRC Crit Rev Biochem. 1984;17(1):45–71. doi: 10.3109/10409238409110269. [DOI] [PubMed] [Google Scholar]
  23. Deutscher M. P., Reuven N. B. Enzymatic basis for hydrolytic versus phosphorolytic mRNA degradation in Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3277–3280. doi: 10.1073/pnas.88.8.3277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Deutscher M. P. Ribonucleases, tRNA nucleotidyltransferase, and the 3' processing of tRNA. Prog Nucleic Acid Res Mol Biol. 1990;39:209–240. doi: 10.1016/s0079-6603(08)60628-5. [DOI] [PubMed] [Google Scholar]
  25. Donovan W. P., Kushner S. R. Amplification of ribonuclease II (rnb) activity in Escherichia coli K-12. Nucleic Acids Res. 1983 Jan 25;11(2):265–275. doi: 10.1093/nar/11.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Donovan W. P., Kushner S. R. Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1986 Jan;83(1):120–124. doi: 10.1073/pnas.83.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Duffy J. J., Chaney S. G., Boyer P. D. Incorporation of water oxygens into intracellular nucleotides and RNA. I. Predominantly non-hydrolytic RNA turnover in Bacillus subtilis. J Mol Biol. 1972 Mar 14;64(3):565–579. doi: 10.1016/0022-2836(72)90083-6. [DOI] [PubMed] [Google Scholar]
  28. Ghosh R. K., Deutscher M. P. Identification of an Escherichia coli nuclease acting on structurally altered transfer RNA molecules. J Biol Chem. 1978 Feb 25;253(4):997–1000. [PubMed] [Google Scholar]
  29. Ghosh R. K., Deutscher M. P. Purification of potential 3' processing nucleases using synthetic tRNA precursors. Nucleic Acids Res. 1978 Oct;5(10):3831–3842. doi: 10.1093/nar/5.10.3831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gorelic Lester, Apirion David. Increased ribonuclease II activity in a temperature sensitive mutant of Escherichia coli. FEBS Lett. 1973 Feb 15;30(1):133–136. doi: 10.1016/0014-5793(73)80635-0. [DOI] [PubMed] [Google Scholar]
  31. Guarneros G., Portier C. Different specificities of ribonuclease II and polynucleotide phosphorylase in 3'mRNA decay. Biochimie. 1990 Nov;72(11):771–777. doi: 10.1016/0300-9084(90)90186-k. [DOI] [PubMed] [Google Scholar]
  32. Hautala J. A., Bassett C. L., Giles N. H., Kushner S. R. Increased expression of a eukaryotic gene in Escherichia coli through stabilization of its messenger RNA. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5774–5778. doi: 10.1073/pnas.76.11.5774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Holmes R. K., Singer M. F. Inability to detect RNase V in Escherichia coli and comparison of other ribonucleases before and after infection with coliphage T7. Biochem Biophys Res Commun. 1971 Aug 20;44(4):837–843. doi: 10.1016/0006-291x(71)90787-x. [DOI] [PubMed] [Google Scholar]
  34. Huang S., Deutscher M. P. Sequence and transcriptional analysis of the Escherichia coli rnt gene encoding RNase T. J Biol Chem. 1992 Dec 15;267(35):25609–25613. [PubMed] [Google Scholar]
  35. Jensen K. F., Andersen J. T., Poulsen P. Overexpression and rapid purification of the orfE/rph gene product, RNase PH of Escherichia coli. J Biol Chem. 1992 Aug 25;267(24):17147–17152. [PubMed] [Google Scholar]
  36. Jones P. G., VanBogelen R. A., Neidhardt F. C. Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol. 1987 May;169(5):2092–2095. doi: 10.1128/jb.169.5.2092-2095.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kasai T., Gupta R. S., Schlessinger D. Exoribonucleases in wild type Escherichia coli and RNase II-deficient mutants. J Biol Chem. 1977 Dec 25;252(24):8950–8956. [PubMed] [Google Scholar]
  38. Kelly K. O., Deutscher M. P. Characterization of Escherichia coli RNase PH. J Biol Chem. 1992 Aug 25;267(24):17153–17158. [PubMed] [Google Scholar]
  39. Kelly K. O., Deutscher M. P. The presence of only one of five exoribonucleases is sufficient to support the growth of Escherichia coli. J Bacteriol. 1992 Oct;174(20):6682–6684. doi: 10.1128/jb.174.20.6682-6684.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kelly K. O., Reuven N. B., Li Z., Deutscher M. P. RNase PH is essential for tRNA processing and viability in RNase-deficient Escherichia coli cells. J Biol Chem. 1992 Aug 15;267(23):16015–16018. [PubMed] [Google Scholar]
  41. King T. C., Sirdeskmukh R., Schlessinger D. Nucleolytic processing of ribonucleic acid transcripts in procaryotes. Microbiol Rev. 1986 Dec;50(4):428–451. doi: 10.1128/mr.50.4.428-451.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Maisurian A. N., Buyanovskaya E. A. Isolation of an Escherichia coli strain restricting bacteriophage suppressor. Mol Gen Genet. 1973 Feb 2;120(3):227–229. doi: 10.1007/BF00267154. [DOI] [PubMed] [Google Scholar]
  43. McLaren R. S., Newbury S. F., Dance G. S., Causton H. C., Higgins C. F. mRNA degradation by processive 3'-5' exoribonucleases in vitro and the implications for prokaryotic mRNA decay in vivo. J Mol Biol. 1991 Sep 5;221(1):81–95. [PubMed] [Google Scholar]
  44. McMurry L. M., Levy S. B. Tn5 insertion in the polynucleotide phosphorylase (pnp) gene in Escherichia coli increases susceptibility to antibiotics. J Bacteriol. 1987 Mar;169(3):1321–1324. doi: 10.1128/jb.169.3.1321-1324.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Niyogi S. K., Datta A. K. A novel oligoribonuclease of Escherichia coli. I. Isolation and properties. J Biol Chem. 1975 Sep 25;250(18):7307–7312. [PubMed] [Google Scholar]
  46. Ost K. A., Deutscher M. P. Escherichia coli orfE (upstream of pyrE) encodes RNase PH. J Bacteriol. 1991 Sep;173(17):5589–5591. doi: 10.1128/jb.173.17.5589-5591.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ost K. A., Deutscher M. P. RNase PH catalyzes a synthetic reaction, the addition of nucleotides to the 3' end of RNA. Biochimie. 1990 Nov;72(11):813–818. doi: 10.1016/0300-9084(90)90190-r. [DOI] [PubMed] [Google Scholar]
  48. Padmanabha K. P., Deutscher M. P. RNase T affects Escherichia coli growth and recovery from metabolic stress. J Bacteriol. 1991 Feb;173(4):1376–1381. doi: 10.1128/jb.173.4.1376-1381.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Petersen C. Control of functional mRNA stability in bacteria: multiple mechanisms of nucleolytic and non-nucleolytic inactivation. Mol Microbiol. 1992 Feb;6(3):277–282. doi: 10.1111/j.1365-2958.1992.tb01469.x. [DOI] [PubMed] [Google Scholar]
  50. Portier C., Dondon L., Grunberg-Manago M., Régnier P. The first step in the functional inactivation of the Escherichia coli polynucleotide phosphorylase messenger is a ribonuclease III processing at the 5' end. EMBO J. 1987 Jul;6(7):2165–2170. doi: 10.1002/j.1460-2075.1987.tb02484.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Portier C. Quaternary structure of polynucleotide phosphorylase from Escherichia coli: evidence of a complex between two types of polypeptide chains. Eur J Biochem. 1975 Jul 15;55(3):573–582. doi: 10.1111/j.1432-1033.1975.tb02194.x. [DOI] [PubMed] [Google Scholar]
  52. Poulsen P., Bonekamp F., Jensen K. F. Structure of the Escherichia coli pyrE operon and control of pyrE expression by a UTP modulated intercistronic attentuation. EMBO J. 1984 Aug;3(8):1783–1790. doi: 10.1002/j.1460-2075.1984.tb02046.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Reuven N. B., Deutscher M. P. Multiple exoribonucleases are required for the 3' processing of Escherichia coli tRNA precursors in vivo. FASEB J. 1993 Jan;7(1):143–148. doi: 10.1096/fasebj.7.1.8422961. [DOI] [PubMed] [Google Scholar]
  54. Robert-Le Meur M., Portier C. E.coli polynucleotide phosphorylase expression is autoregulated through an RNase III-dependent mechanism. EMBO J. 1992 Jul;11(7):2633–2641. doi: 10.1002/j.1460-2075.1992.tb05329.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Roy P., Cudny H., Deutscher M. P. The transfer RNA processing defect in Escherichia coli strains BN and CAN is not due to a mutation in RNAase D or RNAase II. J Mol Biol. 1982 Jul 25;159(1):179–187. doi: 10.1016/0022-2836(82)90038-9. [DOI] [PubMed] [Google Scholar]
  56. Régnier P., Grunberg-Manago M., Portier C. Nucleotide sequence of the pnp gene of Escherichia coli encoding polynucleotide phosphorylase. Homology of the primary structure of the protein with the RNA-binding domain of ribosomal protein S1. J Biol Chem. 1987 Jan 5;262(1):63–68. [PubMed] [Google Scholar]
  57. Seidman J. G., Schmidt F. J., Foss K., McClain W. H. A mutant of escherichia coli defective in removing 3' terminal nucleotides from some transfer RNA precursor molecules. Cell. 1975 Aug;5(4):389–400. doi: 10.1016/0092-8674(75)90058-6. [DOI] [PubMed] [Google Scholar]
  58. Zaniewski R., Petkaitis E., Deutscher M. P. A multiple mutant of Escherichia coli lacking the exoribonucleases RNase II, RNase D, and RNase BN. J Biol Chem. 1984 Oct 10;259(19):11651–11653. [PubMed] [Google Scholar]
  59. Zhang J. R., Deutscher M. P. Analysis of the upstream region of the Escherichia coli rnd gene encoding RNase D. Evidence for translational regulation of a putative tRNA processing enzyme. J Biol Chem. 1989 Oct 25;264(30):18228–18233. [PubMed] [Google Scholar]
  60. Zhang J. R., Deutscher M. P. Escherichia coli RNase D: sequencing of the rnd structural gene and purification of the overexpressed protein. Nucleic Acids Res. 1988 Jul 25;16(14A):6265–6278. doi: 10.1093/nar/16.14.6265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Zhang J. R., Deutscher M. P. Transfer RNA is a substrate for RNase D in vivo. J Biol Chem. 1988 Dec 5;263(34):17909–17912. [PubMed] [Google Scholar]
  62. Zhang J., Deutscher M. P. A uridine-rich sequence required for translation of prokaryotic mRNA. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2605–2609. doi: 10.1073/pnas.89.7.2605. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES