Abstract
Two corrinoid proteins with molecular sizes of 480 and 29 kDa are stably methylated by [2-14C]acetate-derived intermediates in cell extracts of aceticlastic Methanosarcina barkeri when methylreductase is inhibited by the addition of bromoethanesulfonic acid. Both 14CH3-proteins have been isolated to near homogeneity and found to be abundant soluble proteins. The larger protein possesses two subunits, of 41.4 and 30.4 kDa, in an equimolar ratio, suggesting an alpha 6 beta 6 conformation with six bound methylated corrinoids per 480-kDa molecule. The 29-kDa protein is a monomer in solution and possesses only one methylated corrinoid. All methyl groups on both proteins are photolabile, but the methylated corrinoid bound to the 29-kDa protein undergoes photolysis at a higher rate than that bound to the 480-kDa protein. The two proteins possess discrete N termini and do not appear to be forms of the same protein in equilibrium. Neither protein has an Fe4S4 cluster, and both have UV-visible spectra most similar to that of a base-on methylated corrinoid. A previously identified methylated protein, designated the unknown A 14CH3-protein, copurifies with the 480-kDa protein and has the same subunit composition. The methyl groups of both isolated 14CH3-proteins are converted to methane in cell extracts. The methylated proteins that accumulate in extracts in the presence of bromoethanesulfonic acid are demethylated by the addition of coenzyme M. Both isolated proteins are abundant novel corrinoid proteins that can methylate and be methylated by intermediates of the methanogenic pathway.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbanat D. R., Ferry J. G. Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3272–3276. doi: 10.1073/pnas.88.8.3272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLAYLOCK B. A., STADTMAN T. C. Biosynthesis of methane from the methyl moiety of methylcobalamin. Biochem Biophys Res Commun. 1963 Apr 2;11:34–38. doi: 10.1016/0006-291x(63)90023-8. [DOI] [PubMed] [Google Scholar]
- Becher B., Müller V., Gottschalk G. N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase of Methanosarcina strain Gö1 is an Na(+)-translocating membrane protein. J Bacteriol. 1992 Dec;174(23):7656–7660. doi: 10.1128/jb.174.23.7656-7660.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaylock B. A. Cobamide-dependent methanol-cyanocob(I)alamin methyltransferase of Methanosarcina barkeri. Arch Biochem Biophys. 1968 Mar 20;124(1):314–324. doi: 10.1016/0003-9861(68)90333-0. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cao X. J., Krzycki J. A. Acetate-dependent methylation of two corrinoid proteins in extracts of Methanosarcina barkeri. J Bacteriol. 1991 Sep;173(17):5439–5448. doi: 10.1128/jb.173.17.5439-5448.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeMoll E., Grahame D. A., Harnly J. M., Tsai L., Stadtman T. C. Purification and properties of carbon monoxide dehydrogenase from Methanococcus vannielii. J Bacteriol. 1987 Sep;169(9):3916–3920. doi: 10.1128/jb.169.9.3916-3920.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiMarco A. A., Bobik T. A., Wolfe R. S. Unusual coenzymes of methanogenesis. Annu Rev Biochem. 1990;59:355–394. doi: 10.1146/annurev.bi.59.070190.002035. [DOI] [PubMed] [Google Scholar]
- Ellermann J., Hedderich R., Böcher R., Thauer R. K. The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem. 1988 Mar 15;172(3):669–677. doi: 10.1111/j.1432-1033.1988.tb13941.x. [DOI] [PubMed] [Google Scholar]
- Ferry J. G. Methane from acetate. J Bacteriol. 1992 Sep;174(17):5489–5495. doi: 10.1128/jb.174.17.5489-5495.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischer R., Gärtner P., Yeliseev A., Thauer R. K. N5-methyltetrahydromethanopterin: coenzyme M methyltransferase in methanogenic archaebacteria is a membrane protein. Arch Microbiol. 1992;158(3):208–217. doi: 10.1007/BF00290817. [DOI] [PubMed] [Google Scholar]
- Frasca V., Banerjee R. V., Dunham W. R., Sands R. H., Matthews R. G. Cobalamin-dependent methionine synthase from Escherichia coli B: electron paramagnetic resonance spectra of the inactive form and the active methylated form of the enzyme. Biochemistry. 1988 Nov 1;27(22):8458–8465. doi: 10.1021/bi00422a025. [DOI] [PubMed] [Google Scholar]
- Grahame D. A. Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J Biol Chem. 1991 Nov 25;266(33):22227–22233. [PubMed] [Google Scholar]
- Grahame D. A. Different isozymes of methylcobalamin:2-mercaptoethanesulfonate methyltransferase predominate in methanol- versus acetate-grown Methanosarcina barkeri. J Biol Chem. 1989 Aug 5;264(22):12890–12894. [PubMed] [Google Scholar]
- Grahame D. A., Stadtman T. C. Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physicochemical properties of the enzyme. J Biol Chem. 1987 Mar 15;262(8):3706–3712. [PubMed] [Google Scholar]
- Grahame D. A., Stadtman T. C. In vitro methane and methyl coenzyme M formation from acetate: evidence that acetyl-CoA is the required intermediate activated form of acetate. Biochem Biophys Res Commun. 1987 Aug 31;147(1):254–258. doi: 10.1016/s0006-291x(87)80114-6. [DOI] [PubMed] [Google Scholar]
- Hogenkamp H. P., Bratt G. T., Kotchevar A. T. Reaction of alkylcobalamins with thiols. Biochemistry. 1987 Jul 28;26(15):4723–4727. doi: 10.1021/bi00389a019. [DOI] [PubMed] [Google Scholar]
- Jetten M. S., Hagen W. R., Pierik A. J., Stams A. J., Zehnder A. J. Paramagnetic centers and acetyl-coenzyme A/CO exchange activity of carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur J Biochem. 1991 Jan 30;195(2):385–391. doi: 10.1111/j.1432-1033.1991.tb15717.x. [DOI] [PubMed] [Google Scholar]
- Jetten M. S., Stams A. J., Zehnder A. J. Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii. Eur J Biochem. 1989 May 1;181(2):437–441. doi: 10.1111/j.1432-1033.1989.tb14744.x. [DOI] [PubMed] [Google Scholar]
- Keltjens J. T., Vogels G. D. Methanopterin and methanogenic bacteria. Biofactors. 1988 Jan;1(1):95–103. [PubMed] [Google Scholar]
- Kengen S. W., Daas P. J., Duits E. F., Keltjens J. T., van der Drift C., Vogels G. D. Isolation of a 5-hydroxybenzimidazolyl cobamide-containing enzyme involved in the methyltetrahydromethanopterin: coenzyme M methyltransferase reaction in Methanobacterium thermoautotrophicum. Biochim Biophys Acta. 1992 Feb 1;1118(3):249–260. doi: 10.1016/0167-4838(92)90282-i. [DOI] [PubMed] [Google Scholar]
- Krzycki J. A., Mortenson L. E., Prince R. C. Paramagnetic centers of carbon monoxide dehydrogenase from aceticlastic Methanosarcina barkeri. J Biol Chem. 1989 May 5;264(13):7217–7221. [PubMed] [Google Scholar]
- Krzycki J. A., Zeikus J. G. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J Bacteriol. 1984 Apr;158(1):231–237. doi: 10.1128/jb.158.1.231-237.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOVENBERG W., BUCHANAN B. B., RABINOWITZ J. C. STUDIES ON THE CHEMICAL NATURE OF CLOSTRIDIAL FERREDOXIN. J Biol Chem. 1963 Dec;238:3899–3913. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lovley D. R., White R. H., Ferry J. G. Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina spp. J Bacteriol. 1984 Nov;160(2):521–525. doi: 10.1128/jb.160.2.521-525.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundie L. L., Jr, Ferry J. G. Activation of acetate by Methanosarcina thermophila. Purification and characterization of phosphotransacetylase. J Biol Chem. 1989 Nov 5;264(31):18392–18396. [PubMed] [Google Scholar]
- Müller V., Blaut M., Gottschalk G. The transmembrane electrochemical gradient of Na+ as driving force for methanol oxidation in Methanosarcina barkeri. Eur J Biochem. 1988 Mar 15;172(3):601–606. doi: 10.1111/j.1432-1033.1988.tb13931.x. [DOI] [PubMed] [Google Scholar]
- Pol A., van der Drift C., Vogels G. D. Corrinoids from Methanosarcina barkeri: structure of the alpha-ligand. Biochem Biophys Res Commun. 1982 Sep 30;108(2):731–737. doi: 10.1016/0006-291x(82)90890-7. [DOI] [PubMed] [Google Scholar]
- Ragsdale S. W., Lindahl P. A., Münck E. Mössbauer, EPR, and optical studies of the corrinoid/iron-sulfur protein involved in the synthesis of acetyl coenzyme A by Clostridium thermoaceticum. J Biol Chem. 1987 Oct 15;262(29):14289–14297. [PubMed] [Google Scholar]
- Raybuck S. A., Ramer S. E., Abbanat D. R., Peters J. W., Orme-Johnson W. H., Ferry J. G., Walsh C. T. Demonstration of carbon-carbon bond cleavage of acetyl coenzyme A by using isotopic exchange catalyzed by the CO dehydrogenase complex from acetate-grown Methanosarcina thermophila. J Bacteriol. 1991 Jan;173(2):929–932. doi: 10.1128/jb.173.2.929-932.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terlesky K. C., Nelson M. J., Ferry J. G. Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grown Methanosarcina thermophila. J Bacteriol. 1986 Dec;168(3):1053–1058. doi: 10.1128/jb.168.3.1053-1058.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van de Wijngaard W. M., Lugtigheid R. L., van der Drift C. Reductive activation of the corrinoid-containing enzyme involved in methyl group transfer between methyl-tetrahydromethanopterin and coenzyme M in Methanosarcina barkeri. Antonie Van Leeuwenhoek. 1991 Jul;60(1):1–6. doi: 10.1007/BF00580434. [DOI] [PubMed] [Google Scholar]
- van der Meijden P., Heythuysen H. J., Pouwels A., Houwen F., van der Drift C., Vogels G. D. Methyltransferases involved in methanol conversion by Methanosarcina barkeri. Arch Microbiol. 1983 Jun;134(3):238–242. doi: 10.1007/BF00407765. [DOI] [PubMed] [Google Scholar]
- van der Meijden P., te Brömmelstroet B. W., Poirot C. M., van der Drift C., Vogels G. D. Purification and properties of methanol:5-hydroxybenzimidazolylcobamide methyltransferase from Methanosarcina barkeri. J Bacteriol. 1984 Nov;160(2):629–635. doi: 10.1128/jb.160.2.629-635.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]




