Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Aug;175(15):4851–4858. doi: 10.1128/jb.175.15.4851-4858.1993

New aerobic benzoate oxidation pathway via benzoyl-coenzyme A and 3-hydroxybenzoyl-coenzyme A in a denitrifying Pseudomonas sp.

U Altenschmidt 1, B Oswald 1, E Steiner 1, H Herrmann 1, G Fuchs 1
PMCID: PMC204938  PMID: 8335640

Abstract

A denitrifying Pseudomonas sp. is able to oxidize aromatic compounds compounds completely to CO2, both aerobically and anaerobically. It is shown that benzoate is aerobically oxidized by a new degradation pathway via benzoyl-coenzyme A (CoA) and 3-hydroxybenzoyl-CoA. The organism grew aerobically with benzoate, 3-hydroxybenzoate, and gentisate; catechol, 2-hydroxybenzoate, and protocatechuate were not used, and 4-hydroxybenzoate was a poor substrate. Mutants were obtained which were not able to utilize benzoate as the sole carbon source aerobically but still used 3-hydroxybenzoate or gentisate. Simultaneous adaptation experiments with whole cells seemingly suggested a sequential induction of enzymes of a benzoate oxidation pathway via 3-hydroxybenzoate and gentisate. Cells grown aerobically with benzoate contained a benzoate-CoA ligase (AMP forming) (0.1 mumol min-1 mg-1) which converted benzoate but not 3-hydroxybenzoate into its CoA thioester. The enzyme of 130 kDa composed of two identical subunits of 56 kDa was purified and characterized. Cells grown aerobically with 3-hydroxybenzoate contained a similarly active CoA ligase for 3-hydroxybenzoate, 3-hydroxybenzoate-CoA ligase (AMP forming). Extracts from cells grown aerobically with benzoate catalyzed a benzoyl-CoA- and flavin adenine dinucleotide-dependent oxidation of NADPH with a specific activity of at least 25 nmol NADPH oxidized min-1 mg of protein-1; NADH and benzoate were not used. This new enzyme, benzoyl-CoA 3-monooxygenase, was specifically induced during aerobic growth with benzoate and converted [U-14C]benzoyl-CoA stoichiometrically to [14C]3-hydroxybenzoyl-CoA.

Full text

PDF
4851

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenschmidt U., Bokranz M., Fuchs G. Novel aerobic 2-aminobenzoate metabolism. Nucleotide sequence of the plasmid carrying the gene for the flavoprotein 2-aminobenzoyl-CoA monooxygenase/reductase in a denitrifying Pseudomonas sp. Eur J Biochem. 1992 Jul 15;207(2):715–722. doi: 10.1111/j.1432-1033.1992.tb17100.x. [DOI] [PubMed] [Google Scholar]
  2. Altenschmidt U., Eckerskorn C., Fuchs G. Evidence that enzymes of a novel aerobic 2-amino-benzoate metabolism in denitrifying Pseudomonas are coded on a small plasmid. Eur J Biochem. 1990 Dec 12;194(2):647–653. doi: 10.1111/j.1432-1033.1990.tb15664.x. [DOI] [PubMed] [Google Scholar]
  3. Altenschmidt U., Fuchs G. Novel aerobic 2-aminobenzoate metabolism. Purification and characterization of 2-aminobenzoate-CoA ligase, localisation of the gene on a 8-kbp plasmid, and cloning and sequencing of the gene from a denitrifying Pseudomonas sp. Eur J Biochem. 1992 Apr 15;205(2):721–727. doi: 10.1111/j.1432-1033.1992.tb16835.x. [DOI] [PubMed] [Google Scholar]
  4. Altenschmidt U., Oswald B., Fuchs G. Purification and characterization of benzoate-coenzyme A ligase and 2-aminobenzoate-coenzyme A ligases from a denitrifying Pseudomonas sp. J Bacteriol. 1991 Sep;173(17):5494–5501. doi: 10.1128/jb.173.17.5494-5501.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Biegert T., Altenschmidt U., Eckerskorn C., Fuchs G. Enzymes of anaerobic metabolism of phenolic compounds. 4-Hydroxybenzoate-CoA ligase from a denitrifying Pseudomonas species. Eur J Biochem. 1993 Apr 1;213(1):555–561. doi: 10.1111/j.1432-1033.1993.tb17794.x. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Braun K., Gibson D. T. Anaerobic degradation of 2-aminobenzoate (anthranilic acid) by denitrifying bacteria. Appl Environ Microbiol. 1984 Jul;48(1):102–107. doi: 10.1128/aem.48.1.102-107.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buder R., Fuchs G. 2-Aminobenzoyl-CoA monooxygenase/reductase, a novel type of flavoenzyme. Purification and some properties of the enzyme. Eur J Biochem. 1989 Nov 20;185(3):629–635. doi: 10.1111/j.1432-1033.1989.tb15159.x. [DOI] [PubMed] [Google Scholar]
  9. Buder R., Ziegler K., Fuchs G., Langkau B., Ghisla S. 2-Aminobenzoyl-CoA monooxygenase/reductase, a novel type of flavoenzyme. Studies on the stoichiometry and the course of the reaction. Eur J Biochem. 1989 Nov 20;185(3):637–643. doi: 10.1111/j.1432-1033.1989.tb15160.x. [DOI] [PubMed] [Google Scholar]
  10. Chang K. H., Liang P. H., Beck W., Scholten J. D., Dunaway-Mariano D. Isolation and characterization of the three polypeptide components of 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS-3. Biochemistry. 1992 Jun 23;31(24):5605–5610. doi: 10.1021/bi00139a025. [DOI] [PubMed] [Google Scholar]
  11. Crawford R. L. Pathways of 4-hydroxybenzoate degradation among species of Bacillus. J Bacteriol. 1976 Jul;127(1):204–210. doi: 10.1128/jb.127.1.204-210.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Evans W. C., Fuchs G. Anaerobic degradation of aromatic compounds. Annu Rev Microbiol. 1988;42:289–317. doi: 10.1146/annurev.mi.42.100188.001445. [DOI] [PubMed] [Google Scholar]
  13. Geissler J. F., Harwood C. S., Gibson J. Purification and properties of benzoate-coenzyme A ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate. J Bacteriol. 1988 Apr;170(4):1709–1714. doi: 10.1128/jb.170.4.1709-1714.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Groseclose E. E., Ribbons D. W., Hughes H. 3-Hydroxybenzoate 6-hydroxylase from Pseudomonas aeruginosa. Biochem Biophys Res Commun. 1973 Dec 10;55(3):897–903. doi: 10.1016/0006-291x(73)91228-x. [DOI] [PubMed] [Google Scholar]
  15. Herrmann H., Klopotowski T., Günther E. The Hfr status of Pseudomonas aeruginosa is stabilized by integrative suppression. Mol Gen Genet. 1986 Sep;204(3):519–523. doi: 10.1007/BF00331034. [DOI] [PubMed] [Google Scholar]
  16. Koch J., Fuchs G. Enzymatic reduction of benzoyl-CoA to alicyclic compounds, a key reaction in anaerobic aromatic metabolism. Eur J Biochem. 1992 Apr 1;205(1):195–202. doi: 10.1111/j.1432-1033.1992.tb16768.x. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Langkau B., Ghisla S., Buder R., Ziegler K., Fuchs G. 2-Aminobenzoyl-CoA monooxygenase/reductase, a novel type of flavoenzyme. Identification of the reaction products. Eur J Biochem. 1990 Jul 31;191(2):365–371. doi: 10.1111/j.1432-1033.1990.tb19131.x. [DOI] [PubMed] [Google Scholar]
  19. Löffler F., Müller R., Lingens F. Purification and properties of 4-halobenzoate-coenzyme A ligase from Pseudomonas sp. CBS3. Biol Chem Hoppe Seyler. 1992 Oct;373(10):1001–1007. doi: 10.1515/bchm3.1992.373.2.1001. [DOI] [PubMed] [Google Scholar]
  20. Martínez-Blanco H., Reglero A., Rodriguez-Aparicio L. B., Luengo J. M. Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J Biol Chem. 1990 Apr 25;265(12):7084–7090. [PubMed] [Google Scholar]
  21. Mohamed M el-S, Fuchs G. Purification and characterization of phenylacetate-coenzyme A ligase from a denitrifying Pseudomonas sp., an enzyme involved in the anaerobic degradation of phenylacetate. Arch Microbiol. 1993;159(6):554–562. doi: 10.1007/BF00249035. [DOI] [PubMed] [Google Scholar]
  22. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  23. Nilsson B. O., Svalander P. C., Larsson A. Immunization of mice and rabbits by intrasplenic deposition of nanogram quantities of protein attached to Sepharose beads or nitrocellulose paper strips. J Immunol Methods. 1987 May 4;99(1):67–75. doi: 10.1016/0022-1759(87)90033-0. [DOI] [PubMed] [Google Scholar]
  24. Poh C. L., Bayly R. C. Evidence for isofunctional enzymes used in m-cresol and 2,5-xylenol degradation via the gentisate pathway in Pseudomonas alcaligenes. J Bacteriol. 1980 Jul;143(1):59–69. doi: 10.1128/jb.143.1.59-69.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scholten J. D., Chang K. H., Babbitt P. C., Charest H., Sylvestre M., Dunaway-Mariano D. Novel enzymic hydrolytic dehalogenation of a chlorinated aromatic. Science. 1991 Jul 12;253(5016):182–185. doi: 10.1126/science.1853203. [DOI] [PubMed] [Google Scholar]
  26. Stanier R. Y. Simultaneous Adaptation: A New Technique for the Study of Metabolic Pathways. J Bacteriol. 1947 Sep;54(3):339–348. doi: 10.1128/jb.54.3.339-348.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wheelis M. L., Palleroni N. J., Stanier R. Y. The metabolism of aromatic acids by Pseudomonas testosteroni and P. acidovorans. Arch Mikrobiol. 1967;59(1):302–314. doi: 10.1007/BF00406344. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES