Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Aug;175(16):5022–5027. doi: 10.1128/jb.175.16.5022-5027.1993

Developmental regulation of hexosamine biosynthesis by protein phosphatases 2A and 2C in Blastocladiella emersonii.

L C Etchebehere 1, M N Simon 1, R B Campanhã 1, P D Zapella 1, M Véron 1, J C Maia 1
PMCID: PMC204967  PMID: 8394312

Abstract

Extracts of the aquatic fungus Blastocladiella emersonii were found to contain protein phosphatases type 1, type 2A, and type 2C with properties analogous to those found in mammalian tissues. The activities of all three protein phosphatases are developmentally regulated, increasing during sporulation, with maximum level in zoospores. Protein phosphatases 2A and 2C, present in zoospore extracts, catalyze the dephosphorylation of L-glutamine:fructose-6-phosphate amidotransferase (EC 2.6.1.16, amidotransferase), a key regulatory enzyme in hexosamine biosynthesis. The protein phosphatase inhibitor okadaic acid induces encystment and inhibits germ tube formation but does not affect the synthesis of the chitinous cell wall. These results strongly suggest that phosphatase 2C is responsible for the dephosphorylation of amidotransferase in vivo. This dephosphorylation is inhibited by uridine-5'-diphospho-N-acetylglucosamine, the end product of hexosamine synthesis and the substrate for chitin synthesis. This result demonstrates a dual role of uridine-5'-diphospho-N-acetylglucosamine by inhibiting the activity of the phosphorylated form of amidotransferase and by preventing its dephosphorylation by protein phosphatases.

Full text

PDF
5022

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borgia P. T. Roles of the orlA, tsE, and bimG genes of Aspergillus nidulans in chitin synthesis. J Bacteriol. 1992 Jan;174(2):384–389. doi: 10.1128/jb.174.2.384-389.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Cabib E., Bowers B. Timing and function of chitin synthesis in yeast. J Bacteriol. 1975 Dec;124(3):1586–1593. doi: 10.1128/jb.124.3.1586-1593.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen P., Alemany S., Hemmings B. A., Resink T. J., Strålfors P., Tung H. Y. Protein phosphatase-1 and protein phosphatase-2A from rabbit skeletal muscle. Methods Enzymol. 1988;159:390–408. doi: 10.1016/0076-6879(88)59039-0. [DOI] [PubMed] [Google Scholar]
  5. Cohen P., Foulkes J. G., Holmes C. F., Nimmo G. A., Tonks N. K. Protein phosphatase inhibitor-1 and inhibitor-2 from rabbit skeletal muscle. Methods Enzymol. 1988;159:427–437. doi: 10.1016/0076-6879(88)59042-0. [DOI] [PubMed] [Google Scholar]
  6. Cohen P., Klumpp S., Schelling D. L. An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett. 1989 Jul 3;250(2):596–600. doi: 10.1016/0014-5793(89)80803-8. [DOI] [PubMed] [Google Scholar]
  7. Cohen P., Schelling D. L., Stark M. J. Remarkable similarities between yeast and mammalian protein phosphatases. FEBS Lett. 1989 Jul 3;250(2):601–606. doi: 10.1016/0014-5793(89)80804-x. [DOI] [PubMed] [Google Scholar]
  8. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  9. Erdödi F., Csortos C., Bot G., Gergely P. Separation of rabbit liver latent and spontaneously active phosphorylase phosphatases by chromatography on heparin-sepharose. Biochem Biophys Res Commun. 1985 Apr 30;128(2):705–712. doi: 10.1016/0006-291x(85)90104-4. [DOI] [PubMed] [Google Scholar]
  10. Etchebehere L. C., Maia J. C. Phosphorylation-dependent regulation of amidotransferase during the development of Blastocladiella emersonii. Arch Biochem Biophys. 1989 Aug 1;272(2):301–310. doi: 10.1016/0003-9861(89)90223-3. [DOI] [PubMed] [Google Scholar]
  11. Frisa P. S., Sonneborn D. R. Developmentally regulated interconversions between end product-inhibitable and noninhibitable forms of a first pathway-specific enzyme activity can be mimicked in vitro by protein dephosphorylation-phosphorylation reactions. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6289–6293. doi: 10.1073/pnas.79.20.6289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GHOSH S., BLUMENTHAL H. J., DAVIDSON E., ROSEMAN S. Glucosamine metabolism. V. Enzymatic synthesis of glucosamine 6-phosphate. J Biol Chem. 1960 May;235:1265–1273. [PubMed] [Google Scholar]
  13. Gomes S. L., Mennucci L., Carlos da Costa Maia J. Calcium efflux during germination of Blastocladiella emersonii. Dev Biol. 1980 Jun 1;77(1):157–166. doi: 10.1016/0012-1606(80)90463-7. [DOI] [PubMed] [Google Scholar]
  14. Helmerhorst E., Stokes G. B. Microcentrifuge desalting: a rapid, quantitative method for desalting small amounts of protein. Anal Biochem. 1980 May 1;104(1):130–135. doi: 10.1016/0003-2697(80)90287-0. [DOI] [PubMed] [Google Scholar]
  15. Ingebritsen T. S., Cohen P. The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities. Eur J Biochem. 1983 May 2;132(2):255–261. doi: 10.1111/j.1432-1033.1983.tb07357.x. [DOI] [PubMed] [Google Scholar]
  16. Kinoshita N., Ohkura H., Yanagida M. Distinct, essential roles of type 1 and 2A protein phosphatases in the control of the fission yeast cell division cycle. Cell. 1990 Oct 19;63(2):405–415. doi: 10.1016/0092-8674(90)90173-c. [DOI] [PubMed] [Google Scholar]
  17. Klumpp S., Cohen P., Schultz J. E. Okadaic acid, an inhibitor of protein phosphatase 1 in Paramecium, causes sustained Ca2(+)-dependent backward swimming in response to depolarizing stimuli. EMBO J. 1990 Mar;9(3):685–689. doi: 10.1002/j.1460-2075.1990.tb08160.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lovett J. S. Growth and differentiation of the water mold Blastocladiella emersonii: cytodifferentiation and the role of ribonucleic acid and protein synthesis. Bacteriol Rev. 1975 Dec;39(4):345–404. doi: 10.1128/br.39.4.345-404.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MacKintosh C., Cohen P. Identification of high levels of type 1 and type 2A protein phosphatases in higher plants. Biochem J. 1989 Aug 15;262(1):335–339. doi: 10.1042/bj2620335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McGowan C. H., Cohen P. Protein phosphatase-2C from rabbit skeletal muscle and liver: an Mg2+-dependent enzyme. Methods Enzymol. 1988;159:416–426. doi: 10.1016/0076-6879(88)59041-9. [DOI] [PubMed] [Google Scholar]
  21. Selitrennikoff C. P., Allin D., Sonneborn D. R. Chitin biosynthesis during Blastocladiella zoospore germination: evidence that the hexosamine biosynthetic pathway is post-translationally activated during cell differentiation. Proc Natl Acad Sci U S A. 1976 Feb;73(2):534–538. doi: 10.1073/pnas.73.2.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Selitrennikoff C. P., Dalley N. E., Sonneborn D. R. Regulation of the hexosamine biosynthetic pathway in the water mold Blastocladiella emersonii: Sensitivity to endproduct inhibition is dependent upon the life cycle phase. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5998–6002. doi: 10.1073/pnas.77.10.5998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Selitrennikoff C. P., Sonneborn D. R. Post-translational control of de novo cell wall formation during Blastocladiella emersonii zoospore germination: feedback regulation of hexosamine biosynthesis. Dev Biol. 1976 Nov;54(1):37–51. doi: 10.1016/0012-1606(76)90284-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES