Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Jan;176(2):426–431. doi: 10.1128/jb.176.2.426-431.1994

Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes.

R Ko 1, L T Smith 1, G M Smith 1
PMCID: PMC205066  PMID: 8288538

Abstract

Listeria monocytogenes is a gram-positive food-borne pathogen that is notably resistant to osmotic stress and can grow at refrigerator temperatures. These two characteristics make it an insidious threat to public health. Like several other organisms, L. monocytogenes accumulates glycine betaine, a ubiquitous and effective osmolyte, intracellularly when grown under osmotic stress. However, it also accumulates glycine betaine when grown under chill stress at refrigerator temperatures. Exogenously added glycine betaine enhances the growth rate of stressed but not unstressed cells, i.e., it confers both osmotolerance and cryotolerance. Both salt-stimulated and cold-stimulated accumulation of glycine betaine occur by transport from the medium rather than by biosynthesis. Direct measurement of glycine betaine uptake shows that cells transport betaine 200-fold faster at high salt concentration (4% NaCl) than without added salt and 15-fold faster at 7 than at 30 degrees C. The kinetics of glycine betaine transport suggest that the two transport systems are indistinguishable in terms of affinity for betaine and may be the same. Hyperosmotic shock and cold shock experiments suggest the transport system(s) to be constitutive; activation was not blocked by chloramphenicol. A cold-activated transport system is a novel observation and has intriguing implications concerning the physical state of the cell membrane at low temperature.

Full text

PDF
426

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bae J. H., Anderson S. H., Miller K. J. Identification of a high-affinity glycine betaine transport system in Staphylococcus aureus. Appl Environ Microbiol. 1993 Aug;59(8):2734–2736. doi: 10.1128/aem.59.8.2734-2736.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown A. D., Simpson J. R. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol. 1972 Oct;72(3):589–591. doi: 10.1099/00221287-72-3-589. [DOI] [PubMed] [Google Scholar]
  3. Coffey T., Nelson M., Bower M., Gazzard B. G. Listeria monocytogenes meningitis in an HIV-infected patient. AIDS. 1989 Sep;3(9):614–615. [PubMed] [Google Scholar]
  4. Cole M. B., Jones M. V., Holyoak C. The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes. J Appl Bacteriol. 1990 Jul;69(1):63–72. doi: 10.1111/j.1365-2672.1990.tb02912.x. [DOI] [PubMed] [Google Scholar]
  5. Conner D. E., Brackett R. E., Beuchat L. R. Effect of temperature, sodium chloride, and pH on growth of Listeria monocytogenes in cabbage juice. Appl Environ Microbiol. 1986 Jul;52(1):59–63. doi: 10.1128/aem.52.1.59-63.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
  7. Csonka L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989 Mar;53(1):121–147. doi: 10.1128/mr.53.1.121-147.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ginther C. L., Ingraham J. L. Cold-sensitive mutant of Salmonella typhimurium defective in nucleosidediphosphokinase. J Bacteriol. 1974 Jun;118(3):1020–1026. doi: 10.1128/jb.118.3.1020-1026.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graham J. E., Wilkinson B. J. Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline, and taurine. J Bacteriol. 1992 Apr;174(8):2711–2716. doi: 10.1128/jb.174.8.2711-2716.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gray M. L., Killinger A. H. Listeria monocytogenes and listeric infections. Bacteriol Rev. 1966 Jun;30(2):309–382. doi: 10.1128/br.30.2.309-382.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hazel J. R., Williams E. E. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res. 1990;29(3):167–227. doi: 10.1016/0163-7827(90)90002-3. [DOI] [PubMed] [Google Scholar]
  12. Herendeen S. L., VanBogelen R. A., Neidhardt F. C. Levels of major proteins of Escherichia coli during growth at different temperatures. J Bacteriol. 1979 Jul;139(1):185–194. doi: 10.1128/jb.139.1.185-194.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones A. L., Hann A. C., Harwood J. L., Lloyd D. Temperature-induced membrane-lipid adaptation in Acanthamoeba castellanii. Biochem J. 1993 Feb 15;290(Pt 1):273–278. doi: 10.1042/bj2900273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kvenberg J. E. Outbreaks of listeriosis/Listeria-contaminated foods. Microbiol Sci. 1988 Dec;5(12):355–358. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Mascola L., Lieb L., Chiu J., Fannin S. L., Linnan M. J. Listeriosis: an uncommon opportunistic infection in patients with acquired immunodeficiency syndrome. A report of five cases and a review of the literature. Am J Med. 1988 Jan;84(1):162–164. doi: 10.1016/0002-9343(88)90027-7. [DOI] [PubMed] [Google Scholar]
  17. Müller H. E. Listeria isolations from feces of patients with diarrhea and from healthy food handlers. Infection. 1990 Mar-Apr;18(2):97–99. doi: 10.1007/BF01641423. [DOI] [PubMed] [Google Scholar]
  18. Patchett R. A., Kelly A. F., Kroll R. G. Effect of sodium chloride on the intracellular solute pools of Listeria monocytogenes. Appl Environ Microbiol. 1992 Dec;58(12):3959–3963. doi: 10.1128/aem.58.12.3959-3963.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Perroud B., Le Rudulier D. Glycine betaine transport in Escherichia coli: osmotic modulation. J Bacteriol. 1985 Jan;161(1):393–401. doi: 10.1128/jb.161.1.393-401.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pine L., Franzus M. J., Malcolm G. B. Guanine is a growth factor for Legionella species. J Clin Microbiol. 1986 Jan;23(1):163–169. doi: 10.1128/jcm.23.1.163-169.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pine L., Malcolm G. B., Brooks J. B., Daneshvar M. I. Physiological studies on the growth and utilization of sugars by Listeria species. Can J Microbiol. 1989 Feb;35(2):245–254. doi: 10.1139/m89-037. [DOI] [PubMed] [Google Scholar]
  22. Pinner R. W., Schuchat A., Swaminathan B., Hayes P. S., Deaver K. A., Weaver R. E., Plikaytis B. D., Reeves M., Broome C. V., Wenger J. D. Role of foods in sporadic listeriosis. II. Microbiologic and epidemiologic investigation. The Listeria Study Group. JAMA. 1992 Apr 15;267(15):2046–2050. [PubMed] [Google Scholar]
  23. Pourkomailian B., Booth I. R. Glycine betaine transport by Staphylococcus aureus: evidence for two transport systems and for their possible roles in osmoregulation. J Gen Microbiol. 1992 Dec;138(12):2515–2518. doi: 10.1099/00221287-138-12-2515. [DOI] [PubMed] [Google Scholar]
  24. Rudolph A. S., Crowe J. H., Crowe L. M. Effects of three stabilizing agents--proline, betaine, and trehalose--on membrane phospholipids. Arch Biochem Biophys. 1986 Feb 15;245(1):134–143. doi: 10.1016/0003-9861(86)90197-9. [DOI] [PubMed] [Google Scholar]
  25. Ryser E. T., Marth E. H. "New" food-borne pathogens of public health significance. J Am Diet Assoc. 1989 Jul;89(7):948–954. [PubMed] [Google Scholar]
  26. Sanderson P. W., Lis L. J., Quinn P. J., Williams W. P. The Hofmeister effect in relation to membrane lipid phase stability. Biochim Biophys Acta. 1991 Aug 5;1067(1):43–50. doi: 10.1016/0005-2736(91)90024-3. [DOI] [PubMed] [Google Scholar]
  27. Schlech W. F., 3rd New perspectives on the gastrointestinal mode of transmission in invasive Listeria monocytogenes infection. Clin Invest Med. 1984;7(4):321–324. [PubMed] [Google Scholar]
  28. Schuchat A., Deaver K. A., Wenger J. D., Plikaytis B. D., Mascola L., Pinner R. W., Reingold A. L., Broome C. V. Role of foods in sporadic listeriosis. I. Case-control study of dietary risk factors. The Listeria Study Group. JAMA. 1992 Apr 15;267(15):2041–2045. [PubMed] [Google Scholar]
  29. Schuchat A., Swaminathan B., Broome C. V. Epidemiology of human listeriosis. Clin Microbiol Rev. 1991 Apr;4(2):169–183. doi: 10.1128/cmr.4.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith L. T., Smith G. M. An osmoregulated dipeptide in stressed Rhizobium meliloti. J Bacteriol. 1989 Sep;171(9):4714–4717. doi: 10.1128/jb.171.9.4714-4717.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Surak J. G., Barefoot S. F. Control of Listeria in the dairy plant. Vet Hum Toxicol. 1987 Jun;29(3):247–249. [PubMed] [Google Scholar]
  32. Walker S. J., Archer P., Banks J. G. Growth of Listeria monocytogenes at refrigeration temperatures. J Appl Bacteriol. 1990 Feb;68(2):157–162. doi: 10.1111/j.1365-2672.1990.tb02561.x. [DOI] [PubMed] [Google Scholar]
  33. Williams W. P., Quinn P. J., Tsonev L. I., Koynova R. D. The effects of glycerol on the phase behaviour of hydrated distearoylphosphatidylethanolamine and its possible relation to the mode of action of cryoprotectants. Biochim Biophys Acta. 1991 Feb 25;1062(2):123–132. doi: 10.1016/0005-2736(91)90383-j. [DOI] [PubMed] [Google Scholar]
  34. Wood J. M. Proline porters effect the utilization of proline as nutrient or osmoprotectant for bacteria. J Membr Biol. 1988 Dec;106(3):183–202. doi: 10.1007/BF01872157. [DOI] [PubMed] [Google Scholar]
  35. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]
  36. van der Marel G. M., van Logtestijn J. G., Mossel D. A. Bacteriological quality of broiler carcasses as affected by in-plant lactic acid decontamination. Int J Food Microbiol. 1988 Feb;6(1):31–42. doi: 10.1016/0168-1605(88)90082-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES