Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Jan;176(2):528–530. doi: 10.1128/jb.176.2.528-530.1994

The Escherichia coli Dga (MurI) protein shares biological activity and structural domains with the Pediococcus pentosaceus glutamate racemase.

M J Pucci 1, J Novotny 1, L F Discotto 1, T J Dougherty 1
PMCID: PMC205080  PMID: 7904596

Abstract

The Pediococcus pentosaceus glutamate racemase gene product complemented the D-glutamate auxotrophy of Escherichia coli WM335. Amino acid sequence analysis of the two proteins revealed 28% identity, primarily in six clusters scattered throughout the sequence. Further analyses indicated secondary structure similarities between the two proteins. These data support a recent report that the dga (murI) gene product is a glutamate racemase.

Full text

PDF
528

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Choi S. Y., Esaki N., Yoshimura T., Soda K. Overproduction of glutamate racemase of Pediococcus pentosaceus in Escherichia coli clone cells and its purification. Protein Expr Purif. 1991 Feb;2(1):90–93. doi: 10.1016/1046-5928(91)90016-c. [DOI] [PubMed] [Google Scholar]
  2. Choi S. Y., Esaki N., Yoshimura T., Soda K. Reaction mechanism of glutamate racemase, a pyridoxal phosphate-independent amino acid racemase. J Biochem. 1992 Jul;112(1):139–142. doi: 10.1093/oxfordjournals.jbchem.a123853. [DOI] [PubMed] [Google Scholar]
  3. Doublet P., van Heijenoort J., Bohin J. P., Mengin-Lecreulx D. The murI gene of Escherichia coli is an essential gene that encodes a glutamate racemase activity. J Bacteriol. 1993 May;175(10):2970–2979. doi: 10.1128/jb.175.10.2970-2979.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Doublet P., van Heijenoort J., Mengin-Lecreulx D. Identification of the Escherichia coli murI gene, which is required for the biosynthesis of D-glutamic acid, a specific component of bacterial peptidoglycan. J Bacteriol. 1992 Sep;174(18):5772–5779. doi: 10.1128/jb.174.18.5772-5779.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dougherty T. J., Thanassi J. A., Pucci M. J. The Escherichia coli mutant requiring D-glutamic acid is the result of mutations in two distinct genetic loci. J Bacteriol. 1993 Jan;175(1):111–116. doi: 10.1128/jb.175.1.111-116.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gallo K. A., Knowles J. R. Purification, cloning, and cofactor independence of glutamate racemase from Lactobacillus. Biochemistry. 1993 Apr 20;32(15):3981–3990. doi: 10.1021/bi00066a019. [DOI] [PubMed] [Google Scholar]
  7. Gallo K. A., Tanner M. E., Knowles J. R. Mechanism of the reaction catalyzed by glutamate racemase. Biochemistry. 1993 Apr 20;32(15):3991–3997. doi: 10.1021/bi00066a020. [DOI] [PubMed] [Google Scholar]
  8. Hoffmann B., Messer W., Schwarz U. Regulation of polar cap formation in the life cycle of Escherichia coli. J Supramol Struct. 1972;1(1):29–37. doi: 10.1002/jss.400010105. [DOI] [PubMed] [Google Scholar]
  9. KURAMITSU H. K., SNOKE J. E. The biosynthesis of D-amino acids in Bacillus licheniformis. Biochim Biophys Acta. 1962 Jul 30;62:114–121. doi: 10.1016/0006-3002(62)90496-1. [DOI] [PubMed] [Google Scholar]
  10. Lugtenberg E. J., Wijsman H. J., van Zaane D. Properties of a D-glutamic acid-requiring mutant of Escherichia coli. J Bacteriol. 1973 May;114(2):499–506. doi: 10.1128/jb.114.2.499-506.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Novotný J., Auffray C. A program for prediction of protein secondary structure from nucleotide sequence data: application to histocompatibility antigens. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):243–255. doi: 10.1093/nar/12.1part1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Okada H., Yohda M., Giga-Hama Y., Ueno Y., Ohdo S., Kumagai H. Distribution and purification of aspartate racemase in lactic acid bacteria. Biochim Biophys Acta. 1991 Jul 12;1078(3):377–382. doi: 10.1016/0167-4838(91)90159-w. [DOI] [PubMed] [Google Scholar]
  13. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. THORNE C. B., GOMEZ C. G., HOUSEWRIGHT R. D. Transamination of D-amino acids by Bacillus subtilis. J Bacteriol. 1955 Mar;69(3):357–362. doi: 10.1128/jb.69.3.357-362.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. THORNE C. B., MOLNAR D. M. D-Amino acid transamination in bacillus anthracis. J Bacteriol. 1955 Oct;70(4):420–426. doi: 10.1128/jb.70.4.420-426.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tanizawa K., Asano S., Masu Y., Kuramitsu S., Kagamiyama H., Tanaka H., Soda K. The primary structure of thermostable D-amino acid aminotransferase from a thermophilic Bacillus species and its correlation with L-amino acid aminotransferases. J Biol Chem. 1989 Feb 15;264(5):2450–2454. [PubMed] [Google Scholar]
  17. Tanner M. E., Gallo K. A., Knowles J. R. Isotope effects and the identification of catalytic residues in the reaction catalyzed by glutamate racemase. Biochemistry. 1993 Apr 20;32(15):3998–4006. doi: 10.1021/bi00066a021. [DOI] [PubMed] [Google Scholar]
  18. Wang R. F., Kushner S. R. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene. 1991 Apr;100:195–199. [PubMed] [Google Scholar]
  19. Yohda M., Okada H., Kumagai H. Molecular cloning and nucleotide sequencing of the aspartate racemase gene from lactic acid bacteria Streptococcus thermophilus. Biochim Biophys Acta. 1991 Jun 13;1089(2):234–240. doi: 10.1016/0167-4781(91)90013-c. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES