Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Feb;176(3):596–601. doi: 10.1128/jb.176.3.596-601.1994

Lactobacillus plantarum ldhL gene: overexpression and deletion.

T Ferain 1, D Garmyn 1, N Bernard 1, P Hols 1, J Delcour 1
PMCID: PMC205095  PMID: 8300514

Abstract

Lactobacillus plantarum is a lactic acid bacterium that converts pyruvate to L-(+)- and D-(-)-lactate with stereospecific enzymes designated L-(+)- and D-(-)-lactate dehydrogenase (LDH), respectively. A gene (designated ldhL) that encodes L-(+)-lactate dehydrogenase from L. plantarum DG301 was cloned by complementation in Escherichia coli. The nucleotide sequence of the ldhL gene predicted a protein of 320 amino acids closely related to that of Lactobacillus pentosus. A multicopy plasmid bearing the ldhL gene without modification of its expression signals was introduced in L. plantarum. L-LDH activity was increased up to 13-fold through this gene dosage effect. However, this change had hardly any effect on the production of L-(+)- and D-(-)-lactate. A stable chromosomal deletion in the ldhL gene was then constructed in L. plantarum by a two-step homologous recombination process. Inactivation of the gene resulted in the absence of L-LDH activity and in exclusive production of the D isomer of lactate. However, the global concentration of lactate in the culture supernatant remained unchanged.

Full text

PDF
596

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arfman N., Worrell V., Ingram L. O. Use of the tac promoter and lacIq for the controlled expression of Zymomonas mobilis fermentative genes in Escherichia coli and Zymomonas mobilis. J Bacteriol. 1992 Nov;174(22):7370–7378. doi: 10.1128/jb.174.22.7370-7378.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babul J., Clifton D., Kretschmer M., Fraenkel D. G. Glucose metabolism in Escherichia coli and the effect of increased amount of aldolase. Biochemistry. 1993 May 4;32(17):4685–4692. doi: 10.1021/bi00068a029. [DOI] [PubMed] [Google Scholar]
  3. Bernard N., Ferain T., Garmyn D., Hols P., Delcour J. Cloning of the D-lactate dehydrogenase gene from Lactobacillus delbrueckii subsp. bulgaricus by complementation in Escherichia coli. FEBS Lett. 1991 Sep 23;290(1-2):61–64. doi: 10.1016/0014-5793(91)81226-x. [DOI] [PubMed] [Google Scholar]
  4. Brindle K. M. 31P NMR magnetization-transfer measurements of flux between inorganic phosphate and adenosine 5'-triphosphate in yeast cells genetically modified to overproduce phosphoglycerate kinase. Biochemistry. 1988 Aug 9;27(16):6187–6196. doi: 10.1021/bi00416a054. [DOI] [PubMed] [Google Scholar]
  5. Chen J. D., Morrison D. A. Construction and properties of a new insertion vector, pJDC9, that is protected by transcriptional terminators and useful for cloning of DNA from Streptococcus pneumoniae. Gene. 1988 Apr 15;64(1):155–164. doi: 10.1016/0378-1119(88)90489-1. [DOI] [PubMed] [Google Scholar]
  6. Clarke A. R., Atkinson T., Holbrook J. J. From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Part I. Trends Biochem Sci. 1989 Mar;14(3):101–105. doi: 10.1016/0968-0004(89)90131-x. [DOI] [PubMed] [Google Scholar]
  7. Clarke A. R., Atkinson T., Holbrook J. J. From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Part II. Trends Biochem Sci. 1989 Apr;14(4):145–148. doi: 10.1016/0968-0004(89)90147-3. [DOI] [PubMed] [Google Scholar]
  8. Clifton D., Walsh R. B., Fraenkel D. G. Functional studies of yeast glucokinase. J Bacteriol. 1993 Jun;175(11):3289–3294. doi: 10.1128/jb.175.11.3289-3294.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Contag P. R., Williams M. G., Rogers P. Cloning of a lactate dehydrogenase gene from Clostridium acetobutylicum B643 and expression in Escherichia coli. Appl Environ Microbiol. 1990 Dec;56(12):3760–3765. doi: 10.1128/aem.56.12.3760-3765.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Driessen A. J. Secondary transport of amino acids by membrane vesicles derived from lactic acid bacteria. Antonie Van Leeuwenhoek. 1989 Aug;56(2):139–160. doi: 10.1007/BF00399978. [DOI] [PubMed] [Google Scholar]
  12. Eventoff W., Rossmann M. G., Taylor S. S., Torff H. J., Meyer H., Keil W., Kiltz H. H. Structural adaptations of lactate dehydrogenase isozymes. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2677–2681. doi: 10.1073/pnas.74.7.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Feeney R., Clarke A. R., Holbrook J. J. A single amino acid substitution in lactate dehydrogenase improves the catalytic efficiency with an alternative coenzyme. Biochem Biophys Res Commun. 1990 Jan 30;166(2):667–672. doi: 10.1016/0006-291x(90)90861-g. [DOI] [PubMed] [Google Scholar]
  14. Harold F. M., Levin E. Lactic acid translocation: terminal step in glycolysis by Streptococcus faecalis. J Bacteriol. 1974 Mar;117(3):1141–1148. doi: 10.1128/jb.117.3.1141-1148.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hols P., de Halleux S., Delcour J. A strategy to construct vector-free amylolytic strains through nondisruptive homologous recombination: application to Enterococcus faecalis. Gene. 1992 Sep 1;118(1):31–38. doi: 10.1016/0378-1119(92)90245-k. [DOI] [PubMed] [Google Scholar]
  16. Josson K., Scheirlinck T., Michiels F., Platteeuw C., Stanssens P., Joos H., Dhaese P., Zabeau M., Mahillon J. Characterization of a gram-positive broad-host-range plasmid isolated from Lactobacillus hilgardii. Plasmid. 1989 Jan;21(1):9–20. doi: 10.1016/0147-619x(89)90082-6. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Llanos R. M., Hillier A. J., Davidson B. E. Cloning, nucleotide sequence, expression, and chromosomal location of ldh, the gene encoding L-(+)-lactate dehydrogenase, from Lactococcus lactis. J Bacteriol. 1992 Nov;174(21):6956–6964. doi: 10.1128/jb.174.21.6956-6964.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mat-Jan F., Alam K. Y., Clark D. P. Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. J Bacteriol. 1989 Jan;171(1):342–348. doi: 10.1128/jb.171.1.342-348.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matin A., Konings W. N. Transport of lactate and succinate by membrane vesicles of Escherichia coli, Bacillus subtilis and a pseudomonas species. Eur J Biochem. 1973 Apr 2;34(1):58–67. doi: 10.1111/j.1432-1033.1973.tb02728.x. [DOI] [PubMed] [Google Scholar]
  21. Montville T. J., Hsu A. H., Meyer M. E. High-Efficiency Conversion of Pyruvate to Acetoin by Lactobacillus plantarum during pH-Controlled and Fed-Batch Fermentations. Appl Environ Microbiol. 1987 Aug;53(8):1798–1802. doi: 10.1128/aem.53.8.1798-1802.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Murphy M. G., O'Connor L., Walsh D., Condon S. Oxygen dependent lactate utilization by Lactobacillus plantarum. Arch Microbiol. 1985 Feb;141(1):75–79. doi: 10.1007/BF00446743. [DOI] [PubMed] [Google Scholar]
  23. Mézes P. S., Blacher R. W., Lampen J. O. Processing of Bacillus cereus 569/H beta-lactamase I in Escherichia coli and Bacillus subtilis. J Biol Chem. 1985 Jan 25;260(2):1218–1223. [PubMed] [Google Scholar]
  24. Posno M., Leer R. J., van Luijk N., van Giezen M. J. F., Heuvelmans P. T. H. M., Lokman B. C., Pouwels P. H. Incompatibility of Lactobacillus Vectors with Replicons Derived from Small Cryptic Lactobacillus Plasmids and Segregational Instability of the Introduced Vectors. Appl Environ Microbiol. 1991 Jun;57(6):1822–1828. doi: 10.1128/aem.57.6.1822-1828.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. RICHMOND M. H. The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bacteriol Rev. 1962 Dec;26:398–420. doi: 10.1128/br.26.4.398-420.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schaaff I., Heinisch J., Zimmermann F. K. Overproduction of glycolytic enzymes in yeast. Yeast. 1989 Jul-Aug;5(4):285–290. doi: 10.1002/yea.320050408. [DOI] [PubMed] [Google Scholar]
  27. Sedivy J. M., Babul J., Fraenkel D. G. AMP-insensitive fructose bisphosphatase in Escherichia coli and its consequences. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1656–1659. doi: 10.1073/pnas.83.6.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taguchi H., Ohta T. D-lactate dehydrogenase is a member of the D-isomer-specific 2-hydroxyacid dehydrogenase family. Cloning, sequencing, and expression in Escherichia coli of the D-lactate dehydrogenase gene of Lactobacillus plantarum. J Biol Chem. 1991 Jul 5;266(19):12588–12594. [PubMed] [Google Scholar]
  29. Tseng C. P., Tsau J. L., Montville T. J. Bioenergetic consequences of catabolic shifts by Lactobacillus plantarum in response to shifts in environmental oxygen and pH in chemostat cultures. J Bacteriol. 1991 Jul;173(14):4411–4416. doi: 10.1128/jb.173.14.4411-4416.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Villafane R., Bechhofer D. H., Narayanan C. S., Dubnau D. Replication control genes of plasmid pE194. J Bacteriol. 1987 Oct;169(10):4822–4829. doi: 10.1128/jb.169.10.4822-4829.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES