Abstract
Melanin production is a major virulence factor for Cryptococcus neoformans, an organism causing life-threatening infections in an estimated 10% of AIDS patients. In order to characterize the events involved in melanin synthesis, an enzyme having diphenol oxidase activity was purified and its gene was cloned. The enzyme was purified as a glycosylated 75-kDa protein which migrated at 66 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis after deglycosylation by endoglycosidase F. Substrate specificity resembled that of a laccase in that it oxidized multiple diphenolic and diamino compounds. Dopamine was shown by mass spectroscopy to be oxidized to decarboxy dopachrome, an intermediate of melanin synthesis. The enzyme contained 4.1 +/- 0.1 mol of copper per mol. It resembled a laccase in its absorbance spectrum, containing a peak of 610 nm and the shoulder at 320 nm, corresponding to the absorbance of a type I and type III copper, respectively. The cloned gene of C. neoformans laccase (CNLAC1) contained a single open reading frame encoding a polypeptide 624 amino acids in length. The encoded polypeptide contained a presumptive leader sequence, on the basis of its relative hydrophobicity and by comparison of the sequence to that of the N-terminal sequence of the purified enzyme. CNLAC1 also contained 14 introns ranging from 52 to 340 bases long. Transcriptional activity of CNLAC1 was found to be derepressed in the absence of glucose and to correspond to an increase in enzymatic activity.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aebersold R. H., Leavitt J., Saavedra R. A., Hood L. E., Kent S. B. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6970–6974. doi: 10.1073/pnas.84.20.6970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aroca P., Solano F., García-Borrón J. C., Lozano J. A. A new spectrophotometric assay for dopachrome tautomerase. J Biochem Biophys Methods. 1990 Jun;21(1):35–46. doi: 10.1016/0165-022x(90)90043-c. [DOI] [PubMed] [Google Scholar]
- CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
- Chaskes S., Tyndall R. L. Pigment production by Cryptococcus neoformans and other Cryptococcus species from aminophenols and diaminobenzenes. J Clin Microbiol. 1978 Feb;7(2):146–152. doi: 10.1128/jcm.7.2.146-152.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaskes S., Tyndall R. L. Pigment production by Cryptococcus neoformans from para- and ortho-Diphenols: effect of the nitrogen source. J Clin Microbiol. 1975 Jun;1(6):509–514. doi: 10.1128/jcm.1.6.509-514.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edman J. C., Kwon-Chung K. J. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol. 1990 Sep;10(9):4538–4544. doi: 10.1128/mcb.10.9.4538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gacheru S. N., Trackman P. C., Shah M. A., O'Gara C. Y., Spacciapoli P., Greenaway F. T., Kagan H. M. Structural and catalytic properties of copper in lysyl oxidase. J Biol Chem. 1990 Nov 5;265(31):19022–19027. [PubMed] [Google Scholar]
- Geber A., Williamson P. R., Rex J. H., Sweeney E. C., Bennett J. E. Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization. J Bacteriol. 1992 Nov;174(21):6992–6996. doi: 10.1128/jb.174.21.6992-6996.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Germann U. A., Lerch K. Isolation and partial nucleotide sequence of the laccase gene from Neurospora crassa: amino acid sequence homology of the protein to human ceruloplasmin. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8854–8858. doi: 10.1073/pnas.83.23.8854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grollman E. F., Doi S. Q., Weiss P., Ashwell G., Wajchenberg B. L., Medeiros-Neto G. Hyposialylated thyroglobulin in a patient with congenital goiter and hypothyroidism. J Clin Endocrinol Metab. 1992 Jan;74(1):43–48. doi: 10.1210/jcem.74.1.1727828. [DOI] [PubMed] [Google Scholar]
- Hanna P. M., McMillin D. R., Pasenkiewicz-Gierula M., Antholine W. E., Reinhammar B. Type 2-depleted fungal laccase. Biochem J. 1988 Jul 15;253(2):561–568. doi: 10.1042/bj2530561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikeda R., Jacobson E. S. Heterogeneity of phenol oxidases in Cryptococcus neoformans. Infect Immun. 1992 Sep;60(9):3552–3555. doi: 10.1128/iai.60.9.3552-3555.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson E. S., Emery H. S. Catecholamine uptake, melanization, and oxygen toxicity in Cryptococcus neoformans. J Bacteriol. 1991 Jan;173(1):401–403. doi: 10.1128/jb.173.1.401-403.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kojima Y., Tsukuda Y., Kawai Y., Tsukamoto A., Sugiura J., Sakaino M., Kita Y. Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J Biol Chem. 1990 Sep 5;265(25):15224–15230. [PubMed] [Google Scholar]
- Kwon-Chung K. J., Hill W. B., Bennett J. E. New, special stain for histopathological diagnosis of cryptococcosis. J Clin Microbiol. 1981 Feb;13(2):383–387. doi: 10.1128/jcm.13.2.383-387.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwon-Chung K. J., Polacheck I., Popkin T. J. Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol. 1982 Jun;150(3):1414–1421. doi: 10.1128/jb.150.3.1414-1421.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwon-Chung K. J., Rhodes J. C. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun. 1986 Jan;51(1):218–223. doi: 10.1128/iai.51.1.218-223.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Langford C. J., Gallwitz D. Evidence for an intron-contained sequence required for the splicing of yeast RNA polymerase II transcripts. Cell. 1983 Jun;33(2):519–527. doi: 10.1016/0092-8674(83)90433-6. [DOI] [PubMed] [Google Scholar]
- Larriba G. Translocation of proteins across the membrane of the endoplasmic reticulum: a place for Saccharomyces cerevisiae. Yeast. 1993 May;9(5):441–463. doi: 10.1002/yea.320090502. [DOI] [PubMed] [Google Scholar]
- Mertins P., Gallwitz D. Nuclear pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe strictly requires an intron-contained, conserved sequence element. EMBO J. 1987 Jun;6(6):1757–1763. doi: 10.1002/j.1460-2075.1987.tb02428.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Messerschmidt A., Huber R. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Eur J Biochem. 1990 Jan 26;187(2):341–352. doi: 10.1111/j.1432-1033.1990.tb15311.x. [DOI] [PubMed] [Google Scholar]
- Niece R. L., Beach C. M., Cook R. F., Hathaway G. M., Williams K. R. State-of-the-art biomolecular core facilities: a comprehensive survey. FASEB J. 1991 Oct;5(13):2756–2760. doi: 10.1096/fasebj.5.13.1916100. [DOI] [PubMed] [Google Scholar]
- Nurudeen T. A., Ahearn D. G. Regulation of melanin production by Cryptococcus neoformans. J Clin Microbiol. 1979 Nov;10(5):724–729. doi: 10.1128/jcm.10.5.724-729.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohkawa J., Okada N., Shinmyo A., Takano M. Primary structure of cucumber (Cucumis sativus) ascorbate oxidase deduced from cDNA sequence: homology with blue copper proteins and tissue-specific expression. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1239–1243. doi: 10.1073/pnas.86.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perfect J. R., Rude T. H., Penning L. M., Johnson S. A. Cloning the Cryptococcus neoformans TRP1 gene by complementation in Saccharomyces cerevisiae. Gene. 1992 Dec 1;122(1):213–217. doi: 10.1016/0378-1119(92)90053-r. [DOI] [PubMed] [Google Scholar]
- Perry C. R., Smith M., Britnell C. H., Wood D. A., Thurston C. F. Identification of two laccase genes in the cultivated mushroom Agaricus bisporus. J Gen Microbiol. 1993 Jun;139(Pt 6):1209–1218. doi: 10.1099/00221287-139-6-1209. [DOI] [PubMed] [Google Scholar]
- Polacheck I., Hearing V. J., Kwon-Chung K. J. Biochemical studies of phenoloxidase and utilization of catecholamines in Cryptococcus neoformans. J Bacteriol. 1982 Jun;150(3):1212–1220. doi: 10.1128/jb.150.3.1212-1220.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polacheck I., Platt Y., Aronovitch J. Catecholamines and virulence of Cryptococcus neoformans. Infect Immun. 1990 Sep;58(9):2919–2922. doi: 10.1128/iai.58.9.2919-2922.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prota G. Progress in the chemistry of melanins and related metabolites. Med Res Rev. 1988 Oct-Dec;8(4):525–556. doi: 10.1002/med.2610080405. [DOI] [PubMed] [Google Scholar]
- Roberts A. B., Rosa F., Roche N. S., Coligan J. E., Garfield M., Rebbert M. L., Kondaiah P., Danielpour D., Kehrl J. H., Wahl S. M. Isolation and characterization of TGF-beta 2 and TGF-beta 5 from medium conditioned by Xenopus XTC cells. Growth Factors. 1990;2(2-3):135–147. doi: 10.3109/08977199009071500. [DOI] [PubMed] [Google Scholar]
- Rydén L. Model of the active site in the blue oxidases based on the ceruloplasmin-plastocyanin homology. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6767–6771. doi: 10.1073/pnas.79.22.6767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sirawaraporn W., Cao M., Santi D. V., Edman J. C. Cloning, expression, and characterization of Cryptococcus neoformans dihydrofolate reductase. J Biol Chem. 1993 Apr 25;268(12):8888–8892. [PubMed] [Google Scholar]
- Varma A., Edman J. C., Kwon-Chung K. J. Molecular and genetic analysis of URA5 transformants of Cryptococcus neoformans. Infect Immun. 1992 Mar;60(3):1101–1108. doi: 10.1128/iai.60.3.1101-1108.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varma A., Kwon-Chung K. J. Rapid method to extract DNA from Cryptococcus neoformans. J Clin Microbiol. 1991 Apr;29(4):810–812. doi: 10.1128/jcm.29.4.810-812.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang H. S., Zeimis R. T., Roberts G. D. Evaluation of a caffeic acid-ferric citrate test for rapid identification of Cryptococcus neoformans. J Clin Microbiol. 1977 Nov;6(5):445–449. doi: 10.1128/jcm.6.5.445-449.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wheeler M. H., Bell A. A. Melanins and their importance in pathogenic fungi. Curr Top Med Mycol. 1988;2:338–387. doi: 10.1007/978-1-4612-3730-3_10. [DOI] [PubMed] [Google Scholar]
- Zaret K. S., Sherman F. DNA sequence required for efficient transcription termination in yeast. Cell. 1982 Mar;28(3):563–573. doi: 10.1016/0092-8674(82)90211-2. [DOI] [PubMed] [Google Scholar]