Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Feb;176(3):714–724. doi: 10.1128/jb.176.3.714-724.1994

Inhibition of erythromycin synthesis by disruption of malonyl-coenzyme A decarboxylase gene eryM in Saccharopolyspora erythraea.

Y J Hsieh 1, P E Kolattukudy 1
PMCID: PMC205109  PMID: 8300527

Abstract

Malonyl-coenzyme A (malonyl-CoA) decarboxylase is widely distributed in prokaryotes and eukaryotes. However, the biological function of this enzyme has not been established in any organism. To elucidate the structure and function of this enzyme, the malonyl-CoA decarboxylase gene from Saccharopolyspora erythraea (formerly Streptomyces erythreaus) was cloned and sequenced. This gene would encode a polypeptide of 417 amino acids. The deduced amino acid sequence matched the experimentally determined amino acid sequences of 25 N-terminal residues each of the enzyme and of an internal peptide obtained by proteolysis of the purified enzyme. This decarboxylase showed homology with aminoglycoside N6'-acetyltransferases of Pseudomonas aeruginosa, Serratia marcescens, and Klebsiella pneumoniae. Northern (RNA) blot analysis revealed a single transcript. The transcription initiation site was 220 bp upstream of the start codon. When expressed in Escherichia coli, the S. erythraea malonyl-CoA decarboxylase gene yielded a protein that cross-reacted with antiserum prepared against S. erythraea malonyl-CoA decarboxylase and catalyzed decarboxylation of [3-14C]malonyl-CoA to acetyl-CoA and 14CO2. The S. erythraea malonyl-CoA decarboxylase gene was disrupted by homologous recombination using an integrating vector pWHM3. The gene-disrupted transformant did not produce immunologically cross-reacting 45-kDa decarboxylase, lacked malonyl-CoA decarboxylase activity, and could not produce erythromycin. Exogenous propionate restored the ability to produce erythromycin. These results strongly suggest that the decarboxylase provides propionyl-CoA for erythromycin synthesis probably via decarboxylation of methylmalonyl-CoA derived from succinyl-CoA, and therefore the malonyl-CoA decarboxylase gene is designated eryM. The gene disrupted mutants also did not produce pigments.

Full text

PDF
714

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bibb M. J., Findlay P. R., Johnson M. W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 1984 Oct;30(1-3):157–166. doi: 10.1016/0378-1119(84)90116-1. [DOI] [PubMed] [Google Scholar]
  2. Buckner J. S., Kolattukudy P. E. Lipid biosynthesis in sebaceous glands: regulation of the synthesis of n- and branched fatty acids by malonyl-coenzyme A decarboxylase. Biochemistry. 1975 Apr 22;14(8):1768–1773. doi: 10.1021/bi00679a032. [DOI] [PubMed] [Google Scholar]
  3. Buckner J. S., Kolattukudy P. E. Lipid biosynthesis in the sebaceous glands: synthesis of multibranched fatty acids from methylmalonyl-coenzyme A in cell-free preparations from the uropygial gland of goose. Biochemistry. 1975 Apr 22;14(8):1774–1782. doi: 10.1021/bi00679a033. [DOI] [PubMed] [Google Scholar]
  4. Buckner J. S., Kolattukudy P. E., Poulose A. J. Purification and properties of malonyl-coenzyme A decarboxylase, a regulatory enzyme from the uropygial gland of goose. Arch Biochem Biophys. 1976 Dec;177(2):539–551. doi: 10.1016/0003-9861(76)90465-3. [DOI] [PubMed] [Google Scholar]
  5. Buckner J. S., Kolattukudy P. E., Rogers L. Synthesis of multimethyl-branched fatty acids by avian and mammalian fatty acid synthetase and its regulation by malonyl-CoA decarboxylase in the uropygial gland. Arch Biochem Biophys. 1978 Feb;186(1):152–163. doi: 10.1016/0003-9861(78)90474-5. [DOI] [PubMed] [Google Scholar]
  6. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  7. CORUM C. J., STARK W. M., WILD G. M., BIRD H. L., Jr Biochemical changes in a chemically defined medium by submerged cultures of Streptomyces erythreus. Appl Microbiol. 1954 Nov;2(6):326–329. doi: 10.1128/am.2.6.326-329.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  9. Cortes J., Haydock S. F., Roberts G. A., Bevitt D. J., Leadlay P. F. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature. 1990 Nov 8;348(6297):176–178. doi: 10.1038/348176a0. [DOI] [PubMed] [Google Scholar]
  10. Courchesne-Smith C., Jang S. H., Shi Q., DeWille J., Sasaki G., Kolattukudy P. E. Cytoplasmic accumulation of a normally mitochondrial malonyl-CoA decarboxylase by the use of an alternate transcription start site. Arch Biochem Biophys. 1992 Nov 1;298(2):576–586. doi: 10.1016/0003-9861(92)90452-3. [DOI] [PubMed] [Google Scholar]
  11. Donadio S., Staver M. J., McAlpine J. B., Swanson S. J., Katz L. Modular organization of genes required for complex polyketide biosynthesis. Science. 1991 May 3;252(5006):675–679. doi: 10.1126/science.2024119. [DOI] [PubMed] [Google Scholar]
  12. Gerber N. N., Lechevalier M. P. Prodiginine (prodigiosin-like) pigments from Streptomyces and other aerobic Actinomycetes. Can J Microbiol. 1976 May;22(5):658–667. doi: 10.1139/m76-097. [DOI] [PubMed] [Google Scholar]
  13. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  14. Hopwood D. A., Wildermuth H., Palmer H. M. Mutants of Streptomyces coelicolor defective in sporulation. J Gen Microbiol. 1970 Jun;61(3):397–408. doi: 10.1099/00221287-61-3-397. [DOI] [PubMed] [Google Scholar]
  15. Horinouchi S., Suzuki H., Beppu T. Nucleotide sequence of afsB, a pleiotropic gene involved in secondary metabolism in Streptomyces coelicolor A3(2) and "Streptomyces lividans". J Bacteriol. 1986 Oct;168(1):257–269. doi: 10.1128/jb.168.1.257-269.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hunaiti A. A., Kolattukudy P. E. Source of methylmalonyl-coenzyme A for erythromycin synthesis: methylmalonyl-coenzyme A mutase from Streptomyces erythreus. Antimicrob Agents Chemother. 1984 Feb;25(2):173–178. doi: 10.1128/aac.25.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hunaiti A. R., Kolattukudy P. E. Isolation and characterization of an acyl-coenzyme A carboxylase from an erythromycin-producing Streptomyces erythreus. Arch Biochem Biophys. 1982 Jun;216(1):362–371. doi: 10.1016/0003-9861(82)90222-3. [DOI] [PubMed] [Google Scholar]
  18. Hunaiti A. R., Kolattukudy P. E. Malonyl-CoA decarboxylase from Streptomyces erythreus: purification, properties, and possible role in the production of erythromycin. Arch Biochem Biophys. 1984 Mar;229(2):426–439. doi: 10.1016/0003-9861(84)90172-3. [DOI] [PubMed] [Google Scholar]
  19. Jang S. H., Cheesbrough T. M., Kolattukudy P. E. Molecular cloning, nucleotide sequence, and tissue distribution of malonyl-CoA decarboxylase. J Biol Chem. 1989 Feb 25;264(6):3500–3505. [PubMed] [Google Scholar]
  20. Kim Y. S., Kolattukudy P. E., Boos A. Malonyl-CoA decarboxylase from Mycobacterium tuberculosis and Pseudomonas fluorescens. Arch Biochem Biophys. 1979 Sep;196(2):543–551. doi: 10.1016/0003-9861(79)90306-0. [DOI] [PubMed] [Google Scholar]
  21. Kim Y. S., Kolattukudy P. E. Malonyl-CoA decarboxylase from the uropygial gland of waterfowl: purification, properties, immunological comparison, and role in regulating the synthesis of multimethyl-branched fatty acids. Arch Biochem Biophys. 1978 Oct;190(2):585–597. doi: 10.1016/0003-9861(78)90314-4. [DOI] [PubMed] [Google Scholar]
  22. Kim Y. S., Kolattukudy P. E. Stereospecificity of malonyl-CoA decarboxylase, acetyl-CoA carboxylase, and fatty acid synthetase from the uropygial gland of goose. J Biol Chem. 1980 Jan 25;255(2):686–689. [PubMed] [Google Scholar]
  23. Kolattukudy P. E., Rogers L. M., Balapangu A. Synthesis of methyl-branched fatty acids from methylmalonyl-CoA by fatty acid synthase from both the liver and the harderian gland of the guinea pig. Arch Biochem Biophys. 1987 May 15;255(1):205–209. doi: 10.1016/0003-9861(87)90312-2. [DOI] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Lawlor E. J., Baylis H. A., Chater K. F. Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev. 1987 Dec;1(10):1305–1310. doi: 10.1101/gad.1.10.1305. [DOI] [PubMed] [Google Scholar]
  26. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  27. Nagaso H., Saito S., Saito H., Takahashi H. Nucleotide sequence and expression of a Streptomyces griseosporeus proteinaceous alpha-amylase inhibitor (HaimII) gene. J Bacteriol. 1988 Oct;170(10):4451–4457. doi: 10.1128/jb.170.10.4451-4457.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Otani S., Takatsu M., Nakano M., Kasai S., Miura R. Letter: Roseoflavin, a new antimicrobial pigment from Streptomyces. J Antibiot (Tokyo) 1974 Jan;27(1):86–87. [PubMed] [Google Scholar]
  29. Rainwater D. L., Kolattukudy P. E. Specific acetylation of essential lysine residues in malonyl-CoA decarboxylase. Int J Biochem. 1982;14(7):609–614. doi: 10.1016/0020-711x(82)90044-1. [DOI] [PubMed] [Google Scholar]
  30. Rainwater D. L., Kolattukudy P. E. Synthesis of mycocerosic acids from methylmalonyl coenzyme A by cell-free extracts of Mycobacterium tuberculosis var. bovis BCG. J Biol Chem. 1983 Mar 10;258(5):2979–2985. [PubMed] [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schüep W., Blount J. F., Williams T. H., Stempel A. Production of a novel red pigment, rubrolone, by Streptomyces echinoruber Sp. Nov. II. Chemistry and structure elucidation. J Antibiot (Tokyo) 1978 Dec;31(12):1226–1232. doi: 10.7164/antibiotics.31.1226. [DOI] [PubMed] [Google Scholar]
  33. Scribner H. E., 3rd, Tang T., Bradley S. G. Production of a sporulation pigment by Streptomyces venezuelae. Appl Microbiol. 1973 Jun;25(6):873–879. doi: 10.1128/am.25.6.873-879.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stein D., Cohen S. N. A cloned regulatory gene of Streptomyces lividans can suppress the pigment deficiency phenotype of different developmental mutants. J Bacteriol. 1989 Apr;171(4):2258–2261. doi: 10.1128/jb.171.4.2258-2261.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  36. Tran van Nhieu G., Collatz E. Primary structure of an aminoglycoside 6'-N-acetyltransferase AAC(6')-4, fused in vivo with the signal peptide of the Tn3-encoded beta-lactamase. J Bacteriol. 1987 Dec;169(12):5708–5714. doi: 10.1128/jb.169.12.5708-5714.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wasserman H. H., Rodgers G. C., Keith D. D. Metacycloprodigiosin, a tripyrrole pigment from Streptomyces longisporus ruber. J Am Chem Soc. 1969 Feb 26;91(5):1263–1264. doi: 10.1021/ja01033a065. [DOI] [PubMed] [Google Scholar]
  38. Weber J. M., Losick R. The use of a chromosome integration vector to map erythromycin resistance and production genes in Saccharopolyspora erythraea (Streptomyces erythraeus). Gene. 1988 Sep 7;68(2):173–180. doi: 10.1016/0378-1119(88)90019-4. [DOI] [PubMed] [Google Scholar]
  39. Weber J. M., Schoner B., Losick R. Identification of a gene required for the terminal step in erythromycin A biosynthesis in Saccharopolyspora erythraea (Streptomyces erythreus). Gene. 1989 Feb 20;75(2):235–241. doi: 10.1016/0378-1119(89)90269-2. [DOI] [PubMed] [Google Scholar]
  40. Weber J. M., Wierman C. K., Hutchinson C. R. Genetic analysis of erythromycin production in Streptomyces erythreus. J Bacteriol. 1985 Oct;164(1):425–433. doi: 10.1128/jb.164.1.425-433.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yamamoto H., Maurer K. H., Hutchinson C. R. Transformation of Streptomyces erythraeus. J Antibiot (Tokyo) 1986 Sep;39(9):1304–1313. doi: 10.7164/antibiotics.39.1304. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES