Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Feb;176(3):896–904. doi: 10.1128/jb.176.3.896-904.1994

Structure, composition, and assembly of paracrystalline phycobiliproteins in Synechocystis sp. strain BO 8402 and of phycobilisomes in the derivative strain BO 9201.

W Reuter 1, M Westermann 1, S Brass 1, A Ernst 1, P Böger 1, W Wehrmeyer 1
PMCID: PMC205127  PMID: 8300542

Abstract

The phycobiliproteins of the unicellular cyanobacterium Synechocystis sp. strain BO 8402 and its derivative strain BO 9201 are compared. The biliproteins of strain BO 8402 are organized in paracrystalline inclusion bodies showing an intense autofluorescence in vivo. These protein-pigment aggregates have been isolated. The highly purified complexes contain phycocyanin with traces of phycoerythrin, corresponding linker polypeptides LR35PC and LR33PE (the latter in a small amount), and a unique colored polypeptide with an M(r) of 55,000, designated L55. Allophycocyanin and the core linker polypeptides are absent. The substructure of the aggregates has been studied by electron microscopy. Repetitive subcomplexes of hexameric stacks of biliproteins form extraordinary long rods associated side by side in a highly condensed arrangement. Evidence that the linker polypeptides LR35PC and LR33PE stabilize the biliprotein hexamers is presented, while the location and function of the colored linker L55 remain uncertain. The derivative strain BO 9201 contains established hemidiscoidal phycobilisomes comprising phycoerythrin, phycocyanin, and allophycocyanin as well as the corresponding linker polypeptides. The core-membrane linker protein (LCM), and two polypeptides with M(r)s of 40,000 and 45,000 which are present in small amounts, exhibit strong cross-reactivity in Western blot (immunoblot) analysis using an antibody directed against the colored LCM of a Nostoc sp. In contrast, strain BO 8402 exhibits no polypeptide with a significant immunological cross-reactivity in Western blot analysis. Physiological and genetic implications of the unusual pigment compositions of both strains are discussed.

Full text

PDF
896

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. K., Rayner M. C., Eiserling F. A. Mutations that affect structure and assembly of light-harvesting proteins in the cyanobacterium Synechocystis sp. strain 6701. J Bacteriol. 1987 Jan;169(1):102–109. doi: 10.1128/jb.169.1.102-109.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berkelman T. R., Lagarias J. C. Visualization of bilin-linked peptides and proteins in polyacrylamide gels. Anal Biochem. 1986 Jul;156(1):194–201. doi: 10.1016/0003-2697(86)90173-9. [DOI] [PubMed] [Google Scholar]
  3. Bryant D. A., Stirewalt V. L., Glauser M., Frank G., Sidler W., Zuber H. A small multigene family encodes the rod-core linker polypeptides of Anabaena sp. PCC7120 phycobilisomes. Gene. 1991 Oct 30;107(1):91–99. doi: 10.1016/0378-1119(91)90301-q. [DOI] [PubMed] [Google Scholar]
  4. Capuano V., Braux A. S., Tandeau de Marsac N., Houmard J. The "anchor polypeptide" of cyanobacterial phycobilisomes. Molecular characterization of the Synechococcus sp. PCC 6301 apce gene. J Biol Chem. 1991 Apr 15;266(11):7239–7247. [PubMed] [Google Scholar]
  5. Gantt E., Cunningham F. X., Lipschultz C. A., Mimuro M. N-terminus conservation in the terminal pigment of phycobilisomes from a prokaryotic and eukaryotic alga. Plant Physiol. 1988 Apr;86(4):996–998. doi: 10.1104/pp.86.4.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Giddings T. H., Wasmann C., Staehelin L. A. Structure of the Thylakoids and Envelope Membranes of the Cyanelles of Cyanophora paradoxa. Plant Physiol. 1983 Feb;71(2):409–419. doi: 10.1104/pp.71.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gingrich J. C., Williams R. C., Glazer A. N. Rod substructure in cyanobacterial phycobilisomes: phycoerythrin assembly in synechocystis 6701 phycobilisomes. J Cell Biol. 1982 Oct;95(1):170–178. doi: 10.1083/jcb.95.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glauser M., Stirewalt V. L., Bryant D. A., Sidler W., Zuber H. Structure of the genes encoding the rod-core linker polypeptides of Mastigocladus laminosus phycobilisomes and functional aspects of the phycobiliprotein/linker-polypeptide interactions. Eur J Biochem. 1992 May 1;205(3):927–937. doi: 10.1111/j.1432-1033.1992.tb16859.x. [DOI] [PubMed] [Google Scholar]
  9. Glazer A. N. Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem. 1989 Jan 5;264(1):1–4. [PubMed] [Google Scholar]
  10. Glazer A. N. Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem. 1985;14:47–77. doi: 10.1146/annurev.bb.14.060185.000403. [DOI] [PubMed] [Google Scholar]
  11. Glazer A. N. Phycobilisomes: structure and dynamics. Annu Rev Microbiol. 1982;36:173–198. doi: 10.1146/annurev.mi.36.100182.001133. [DOI] [PubMed] [Google Scholar]
  12. Maxson P., Sauer K., Zhou J. H., Bryant D. A., Glazer A. N. Spectroscopic studies of cyanobacterial phycobilisomes lacking core polypeptides. Biochim Biophys Acta. 1989 Oct 26;977(1):40–51. doi: 10.1016/s0005-2728(89)80007-6. [DOI] [PubMed] [Google Scholar]
  13. Raps S. Differentiation between Phycobiliprotein and Colorless Linker Polypeptides by Fluorescence in the Presence of ZnSO(4). Plant Physiol. 1990 Feb;92(2):358–362. doi: 10.1104/pp.92.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reuter W., Nickel C., Wehrmeyer W. Isolation of allophycocyanin B from Rhodella violacea results in a model of the core from hemidiscoidal phycobilisomes of rhodophyceae. FEBS Lett. 1990 Oct 29;273(1-2):155–158. doi: 10.1016/0014-5793(90)81073-w. [DOI] [PubMed] [Google Scholar]
  15. Rusckowski M., Zilinskas B. A. Allophycocyanin I and the 95 Kilodalton Polypeptide : The Bridge between Phycobilisomes and Membranes. Plant Physiol. 1982 Oct;70(4):1055–1059. doi: 10.1104/pp.70.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Scherer S. Do photosynthetic and respiratory electron transport chains share redox proteins? Trends Biochem Sci. 1990 Dec;15(12):458–462. doi: 10.1016/0968-0004(90)90296-n. [DOI] [PubMed] [Google Scholar]
  17. Siegelman H. W., Kycia J. H. Molecular morphology of cyanobacterial phycobilisomes. Plant Physiol. 1982 Sep;70(3):887–897. doi: 10.1104/pp.70.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wilbanks S. M., Glazer A. N. Rod structure of a phycoerythrin II-containing phycobilisome. II. Complete sequence and bilin attachment site of a phycoerythrin gamma subunit. J Biol Chem. 1993 Jan 15;268(2):1236–1241. [PubMed] [Google Scholar]
  19. Williams R. C., Gingrich J. C., Glazer A. N. Cyanobacterial phycobilisomes. Particles from Synechocystis 6701 and two pigment mutants. J Cell Biol. 1980 Jun;85(3):558–566. doi: 10.1083/jcb.85.3.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yu M. H., Glazer A. N. Cyanobacterial phycobilisomes. Role of the linker polypeptides in the assembly of phycocyanin. J Biol Chem. 1982 Apr 10;257(7):3429–3433. [PubMed] [Google Scholar]
  21. Yu M. H., Glazer A. N., Williams R. C. Cyanobacterial phycobilisomes. Phycocyanin assembly in the rod substructures of anabaena variabilis phycobilisomes. J Biol Chem. 1981 Dec 25;256(24):13130–13136. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES