Abstract
By site-directed mutagenesis, substitutions were made for His-184 (H-184), H-197, H-266, and H-306 in Escherichia coli isocitrate lyase. Of these changes, only mutations of H-184 and H-197 appreciably reduced enzyme activity. Mutation of H-184 to Lys, Arg, or Leu resulted in an inactive isocitrate lyase, and mutation of H-184 to Gln resulted in an enzyme with 0.28% activity. Nondenaturing polyacrylamide gel electrophoresis demonstrated that isocitrate lyase containing the Lys, Arg, Gln, and Leu substitutions at H-184 was assembled poorly into the tetrameric subunit complex. Mutation of H-197 to Lys, Arg, Leu, and Gln resulted in an assembled enzyme with less than 0.25% wild-type activity. Five substitutions for H-266 (Asp, Glu, Val, Ser, and Lys), four substitutions for H-306 (Asp, Glu, Val, and Ser), and a variant in which both H-266 and H-306 were substituted for showed little or no effect on enzyme activity. All the H-197, H-266, and H-306 mutants supported the growth of isocitrate lyase-deficient E. coli JE10 on acetate as the sole carbon source; however, the H-184 mutants did not.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abeysinghe S. I., Baker P. J., Rice D. W., Rodgers H. F., Stillman T. J., Ko Y. H., McFadden B. A., Nimmo H. G. Use of chemical modification in the crystallization of isocitrate lyase from Escherichia coli. J Mol Biol. 1991 Jul 5;220(1):13–16. doi: 10.1016/0022-2836(91)90376-h. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
- Diehl P., McFadden B. A. Site-directed mutagenesis of lysine 193 in Escherichia coli isocitrate lyase by use of unique restriction enzyme site elimination. J Bacteriol. 1993 Apr;175(8):2263–2270. doi: 10.1128/jb.175.8.2263-2270.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Igarashi Y., McFadden B. A., el-Gul T. Active site histidine in spinach ribulosebisphosphate carboxylase/oxygenase modified by diethyl pyrocarbonate. Biochemistry. 1985 Jul 16;24(15):3957–3962. doi: 10.1021/bi00336a024. [DOI] [PubMed] [Google Scholar]
- KORNBERG H. L., KREBS H. A. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature. 1957 May 18;179(4568):988–991. doi: 10.1038/179988a0. [DOI] [PubMed] [Google Scholar]
- Ko Y. H., McFadden B. A. Alkylation of isocitrate lyase from Escherichia coli by 3-bromopyruvate. Arch Biochem Biophys. 1990 May 1;278(2):373–380. doi: 10.1016/0003-9861(90)90273-2. [DOI] [PubMed] [Google Scholar]
- Ko Y. H., Vanni P., Munske G. R., McFadden B. A. Substrate-decreased modification by diethyl pyrocarbonate of two histidines in isocitrate lyase from Escherichia coli. Biochemistry. 1991 Jul 30;30(30):7451–7456. doi: 10.1021/bi00244a012. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Matsuoka M., McFadden B. A. Isolation, hyperexpression, and sequencing of the aceA gene encoding isocitrate lyase in Escherichia coli. J Bacteriol. 1988 Oct;170(10):4528–4536. doi: 10.1128/jb.170.10.4528-4536.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
- RAYMOND S. ACRYLAMIDE GEL ELECTROPHORESIS. Ann N Y Acad Sci. 1964 Dec 28;121:350–365. doi: 10.1111/j.1749-6632.1964.tb14208.x. [DOI] [PubMed] [Google Scholar]
- Robertson E. F., Hoyt J. C., Reeves H. C. Evidence of histidine phosphorylation in isocitrate lyase from Escherichia coli. J Biol Chem. 1988 Feb 15;263(5):2477–2482. [PubMed] [Google Scholar]
- Rua J., Robertson A. G., Nimmo H. G. Identification of the histidine residue in Escherichia coli isocitrate lyase that reacts with diethylpyrocarbonate. Biochim Biophys Acta. 1992 Jul 31;1122(2):212–218. doi: 10.1016/0167-4838(92)90326-9. [DOI] [PubMed] [Google Scholar]
- Vanni P., Giachetti E., Pinzauti G., McFadden B. A. Comparative structure, function and regulation of isocitrate lyase, an important assimilatory enzyme. Comp Biochem Physiol B. 1990;95(3):431–458. doi: 10.1016/0305-0491(90)90002-b. [DOI] [PubMed] [Google Scholar]