Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Feb;176(4):999–1008. doi: 10.1128/jb.176.4.999-1008.1994

Streptomyces lividans glycosylates the linker region of a beta-1,4-glycanase from Cellulomonas fimi.

E Ong 1, D G Kilburn 1, R C Miller Jr 1, R A Warren 1
PMCID: PMC205150  PMID: 8106343

Abstract

The beta-1,4-glycanase Cex of the gram-positive bacterium Cellulomonas fimi is a glycoprotein comprising a C-terminal cellulose-binding domain connected to an N-terminal catalytic domain by a linker containing only prolyl and threonyl (PT) residues. Cex is also glycosylated by Streptomyces lividans. The glycosylation of Cex produced in both C. fimi and S. lividans protects the enzyme from proteolysis. When the gene fragments encoding the cellulose-binding domain of Cex (CBDCex), the PT linker plus CBDCex (PT-CBDCex), and the catalytic domain plus CBDCex of Cex were expressed in S. lividans, only PT-CBDCex was glycosylated. Therefore, all the glycans must be O linked because only the PT linker was glycosylated. A glycosylated form and a nonglycosylated form of PT-CBDCex were produced by S. lividans. The glycosylated form of PT-CBDCex was heterogeneous; its average carbohydrate content was approximately 10 mol of D-mannose equivalents per mol of protein, but the glycans contained from 4 to 12 alpha-D-mannosyl and alpha-D-galactosyl residues. Glycosylated Cex from S. lividans was also heterogeneous. The presence of glycans on PT-CBDCex increased its affinity for bacterial microcrystalline cellulose. The location of glycosylation only on the linker region of Cex correlates with the properties conferred on the enzyme by the glycans.

Full text

PDF
999

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcand N., Kluepfel D., Paradis F. W., Morosoli R., Shareck F. Beta-mannanase of Streptomyces lividans 66: cloning and DNA sequence of the manA gene and characterization of the enzyme. Biochem J. 1993 Mar 15;290(Pt 3):857–863. doi: 10.1042/bj2900857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bibb M. J., Bibb M. J., Ward J. M., Cohen S. N. Nucleotide sequences encoding and promoting expression of three antibiotic resistance genes indigenous to Streptomyces. Mol Gen Genet. 1985;199(1):26–36. doi: 10.1007/BF00327505. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Brawner M., Poste G., Rosenberg M., Westpheling J. Streptomyces: a host for heterologous gene expression. Curr Opin Biotechnol. 1991 Oct;2(5):674–681. doi: 10.1016/0958-1669(91)90033-2. [DOI] [PubMed] [Google Scholar]
  5. Christian R., Schulz G., Schuster-Kolbe J., Allmaier G., Schmid E. R., Sleytr U. B., Messner P. Complete structure of the tyrosine-linked saccharide moiety from the surface layer glycoprotein of Clostridium thermohydrosulfuricum S102-70. J Bacteriol. 1993 Mar;175(5):1250–1256. doi: 10.1128/jb.175.5.1250-1256.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fujii T., Miyashita K. Multiple domain structure in a chitinase gene (chiC) of Streptomyces lividans. J Gen Microbiol. 1993 Apr;139(4):677–686. doi: 10.1099/00221287-139-4-677. [DOI] [PubMed] [Google Scholar]
  7. Furukawa K., Kobata A. Protein glycosylation. Curr Opin Biotechnol. 1992 Oct;3(5):554–559. doi: 10.1016/0958-1669(92)90085-w. [DOI] [PubMed] [Google Scholar]
  8. Garbe T., Harris D., Vordermeier M., Lathigra R., Ivanyi J., Young D. Expression of the Mycobacterium tuberculosis 19-kilodalton antigen in Mycobacterium smegmatis: immunological analysis and evidence of glycosylation. Infect Immun. 1993 Jan;61(1):260–267. doi: 10.1128/iai.61.1.260-267.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Geisow M. J. Glycoprotein glycans--roles and controls. Trends Biotechnol. 1992 Oct;10(10):333–335. doi: 10.1016/0167-7799(92)90262-t. [DOI] [PubMed] [Google Scholar]
  10. Gerwig G. J., Kamerling J. P., Vliegenthart J. F., Morag E., Lamed R., Bayer E. A. Novel oligosaccharide constituents of the cellulase complex of Bacteroides cellulosolvens. Eur J Biochem. 1992 Apr 15;205(2):799–808. doi: 10.1111/j.1432-1033.1992.tb16844.x. [DOI] [PubMed] [Google Scholar]
  11. Gerwig G. J., de Waard P., Kamerling J. P., Vliegenthart J. F., Morgenstern E., Lamed R., Bayer E. A. Novel O-linked carbohydrate chains in the cellulase complex (cellulosome) of Clostridium thermocellum. 3-O-Methyl-N-acetylglucosamine as a constituent of a glycoprotein. J Biol Chem. 1989 Jan 15;264(2):1027–1035. [PubMed] [Google Scholar]
  12. Ghangas G. S., Hu Y. J., Wilson D. B. Cloning of a Thermomonospora fusca xylanase gene and its expression in Escherichia coli and Streptomyces lividans. J Bacteriol. 1989 Jun;171(6):2963–2969. doi: 10.1128/jb.171.6.2963-2969.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ghangas G. S., Wilson D. B. Expression of a Thermomonospora fusca Cellulase Gene in Streptomyces lividans and Bacillus subtilis. Appl Environ Microbiol. 1987 Jul;53(7):1470–1475. doi: 10.1128/aem.53.7.1470-1475.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gilkes N. R., Kilburn D. G., Miller R. C., Jr, Warren R. A. Structural and functional analysis of a bacterial cellulase by proteolysis. J Biol Chem. 1989 Oct 25;264(30):17802–17808. [PubMed] [Google Scholar]
  16. Gilkes N. R., Langsford M. L., Kilburn D. G., Miller R. C., Jr, Warren R. A. Mode of action and substrate specificities of cellulases from cloned bacterial genes. J Biol Chem. 1984 Aug 25;259(16):10455–10459. [PubMed] [Google Scholar]
  17. Gilkes N. R., Warren R. A., Miller R. C., Jr, Kilburn D. G. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J Biol Chem. 1988 Jul 25;263(21):10401–10407. [PubMed] [Google Scholar]
  18. Goochee C. F., Gramer M. J., Andersen D. C., Bahr J. B., Rasmussen J. R. The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Biotechnology (N Y) 1991 Dec;9(12):1347–1355. doi: 10.1038/nbt1291-1347. [DOI] [PubMed] [Google Scholar]
  19. Gusek T. W., Kinsella J. E. Review of the Streptomyces lividans/vector pIJ702 system for gene cloning. Crit Rev Microbiol. 1992;18(4):247–260. doi: 10.3109/10408419209113517. [DOI] [PubMed] [Google Scholar]
  20. Jentoft N. Why are proteins O-glycosylated? Trends Biochem Sci. 1990 Aug;15(8):291–294. doi: 10.1016/0968-0004(90)90014-3. [DOI] [PubMed] [Google Scholar]
  21. Kawamura T., Shockman G. D. Purification and some properties of the endogenous, autolytic N-acetylmuramoylhydrolase of Streptococcus faecium, a bacterial glycoenzyme. J Biol Chem. 1983 Aug 10;258(15):9514–9521. [PubMed] [Google Scholar]
  22. Kluepfel D., Vats-Mehta S., Aumont F., Shareck F., Morosoli R. Purification and characterization of a new xylanase (xylanase B) produced by Streptomyces lividans 66. Biochem J. 1990 Apr 1;267(1):45–50. doi: 10.1042/bj2670045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kobata A., Amano J. Alpha-mannosidases I and II from Aspergillus saitoi. Methods Enzymol. 1987;138:779–785. doi: 10.1016/0076-6879(87)38066-8. [DOI] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Langsford M. L., Gilkes N. R., Singh B., Moser B., Miller R. C., Jr, Warren R. A., Kilburn D. G. Glycosylation of bacterial cellulases prevents proteolytic cleavage between functional domains. FEBS Lett. 1987 Dec 10;225(1-2):163–167. doi: 10.1016/0014-5793(87)81150-x. [DOI] [PubMed] [Google Scholar]
  26. Lechner J., Wieland F. Structure and biosynthesis of prokaryotic glycoproteins. Annu Rev Biochem. 1989;58:173–194. doi: 10.1146/annurev.bi.58.070189.001133. [DOI] [PubMed] [Google Scholar]
  27. MacLeod A. M., Gilkes N. R., Escote-Carlson L., Warren R. A., Kilburn D. G., Miller R. C., Jr Streptomyces lividans glycosylates an exoglucanase (Cex) from Cellulomonas fimi. Gene. 1992 Nov 2;121(1):143–147. doi: 10.1016/0378-1119(92)90173-m. [DOI] [PubMed] [Google Scholar]
  28. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  29. Meinke A., Gilkes N. R., Kilburn D. G., Miller R. C., Jr, Warren R. A. Multiple domains in endoglucanase B (CenB) from Cellulomonas fimi: functions and relatedness to domains in other polypeptides. J Bacteriol. 1991 Nov;173(22):7126–7135. doi: 10.1128/jb.173.22.7126-7135.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Merril C. R. Gel-staining techniques. Methods Enzymol. 1990;182:477–488. doi: 10.1016/0076-6879(90)82038-4. [DOI] [PubMed] [Google Scholar]
  31. Mescher M. F., Strominger J. L. Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2687–2691. doi: 10.1073/pnas.73.8.2687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Messner P., Sleytr U. B. Asparaginyl-rhamnose: a novel type of protein-carbohydrate linkage in a eubacterial surface-layer glycoprotein. FEBS Lett. 1988 Feb 15;228(2):317–320. doi: 10.1016/0014-5793(88)80023-1. [DOI] [PubMed] [Google Scholar]
  33. O'Neill G. P., Kilburn D. G., Warren R. A., Miller R. C., Jr Overproduction from a cellulase gene with a high guanosine-plus-cytosine content in Escherichia coli. Appl Environ Microbiol. 1986 Oct;52(4):737–743. doi: 10.1128/aem.52.4.737-743.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. O'Neill G., Goh S. H., Warren R. A., Kilburn D. G., Miller R. C., Jr Structure of the gene encoding the exoglucanase of Cellulomonas fimi. Gene. 1986;44(2-3):325–330. doi: 10.1016/0378-1119(86)90197-6. [DOI] [PubMed] [Google Scholar]
  35. Paul G., Lottspeich F., Wieland F. Asparaginyl-N-acetylgalactosamine. Linkage unit of halobacterial glycosaminoglycan. J Biol Chem. 1986 Jan 25;261(3):1020–1024. [PubMed] [Google Scholar]
  36. Paulson J. C. Glycoproteins: what are the sugar chains for? Trends Biochem Sci. 1989 Jul;14(7):272–276. doi: 10.1016/0968-0004(89)90062-5. [DOI] [PubMed] [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sawadogo M., Van Dyke M. W. A rapid method for the purification of deprotected oligodeoxynucleotides. Nucleic Acids Res. 1991 Feb 11;19(3):674–674. doi: 10.1093/nar/19.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Scopes R. K. Measurement of protein by spectrophotometry at 205 nm. Anal Biochem. 1974 May;59(1):277–282. doi: 10.1016/0003-2697(74)90034-7. [DOI] [PubMed] [Google Scholar]
  40. Shen H., Schmuck M., Pilz I., Gilkes N. R., Kilburn D. G., Miller R. C., Jr, Warren R. A. Deletion of the linker connecting the catalytic and cellulose-binding domains of endoglucanase A (CenA) of Cellulomonas fimi alters its conformation and catalytic activity. J Biol Chem. 1991 Jun 15;266(17):11335–11340. [PubMed] [Google Scholar]
  41. Strömqvist M., Gruffman H. Periodic acid/Schiff staining of glycoproteins immobilized on a blotting matrix. Biotechniques. 1992 Nov;13(5):744-6, 749. [PubMed] [Google Scholar]
  42. Sumper M., Berg E., Mengele R., Strobel I. Primary structure and glycosylation of the S-layer protein of Haloferax volcanii. J Bacteriol. 1990 Dec;172(12):7111–7118. doi: 10.1128/jb.172.12.7111-7118.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Whitfield D. M., Stojkovski S., Pang H., Baptista J., Sarkar B. Diagnostic methods for the determination of iduronic acid in oligosaccharides. Anal Biochem. 1991 May 1;194(2):259–267. doi: 10.1016/0003-2697(91)90228-l. [DOI] [PubMed] [Google Scholar]
  45. Williamson G., Belshaw N. J., Williamson M. P. O-glycosylation in Aspergillus glucoamylase. Conformation and role in binding. Biochem J. 1992 Mar 1;282(Pt 2):423–428. doi: 10.1042/bj2820423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES