Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Mar;176(5):1482–1487. doi: 10.1128/jb.176.5.1482-1487.1994

Activation of ATP:GTP 3'-pyrophosphotransferase (guanosine pentaphosphate synthetase) in Streptomyces antibioticus.

G H Jones 1
PMCID: PMC205216  PMID: 8113190

Abstract

The activity of the ATP:GTP 3'-pyrophosphotransferase (guanosine pentaphosphate synthetase I [GPSI]) from Streptomyces antibioticus is stimulated maximally by methanol at 20% (vol/vol) in assay mixtures. Although the enzyme is not activated by ribosomes, its activity is stimulated by tRNA (uncharged or charged) and by synthetic mRNA [e.g., poly(U)]. The level of stimulation is greater in the presence of tRNA and poly(U) together than with either RNA alone. Incubation of GPSI with low levels of trypsin also leads to activation of the enzyme. Analysis of the products of mild trypsin digestion revealed the presence of two intermediates whose M(r)s are identical to those of species produced by incubation of purified GPSI with crude extracts of S. antibioticus mycelium. GPSI can be activated by incubation with crude mycelial extracts, and this activation is partially inhibited by the inclusion of trypsin inhibitor in reaction mixtures.

Full text

PDF
1482

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Gallo M., Katz E. Regulation of secondary metabolite biosynthesis: catabolite repression of phenoxazinone synthase and actinomycin formation by glucose. J Bacteriol. 1972 Feb;109(2):659–667. doi: 10.1128/jb.109.2.659-667.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hager D. A., Burgess R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem. 1980 Nov 15;109(1):76–86. doi: 10.1016/0003-2697(80)90013-5. [DOI] [PubMed] [Google Scholar]
  5. Hara A., Sy J. Guanosine 5'-triphosphate, 3'-diphosphate 5'-phosphohydrolase. Purification and substrate specificity. J Biol Chem. 1983 Feb 10;258(3):1678–1683. [PubMed] [Google Scholar]
  6. Haseltine W. A., Block R., Gilbert W., Weber K. MSI and MSII made on ribosome in idling step of protein synthesis. Nature. 1972 Aug 18;238(5364):381–384. doi: 10.1038/238381a0. [DOI] [PubMed] [Google Scholar]
  7. Haseltine W. A., Block R. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci U S A. 1973 May;70(5):1564–1568. doi: 10.1073/pnas.70.5.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hernandez V. J., Bremer H. Escherichia coli ppGpp synthetase II activity requires spoT. J Biol Chem. 1991 Mar 25;266(9):5991–5999. [PubMed] [Google Scholar]
  9. Jones G. H. Macromolecular synthesis in Streptomyces antibioticus: in vitro systems for aminoacylation and translation from young and old cells. J Bacteriol. 1975 Oct;124(1):364–372. doi: 10.1128/jb.124.1.364-372.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jones G. H. Purification and properties of ATP:GTP 3'-pyrophosphotransferase (guanosine pentaphosphate synthetase) from Streptomyces antibioticus. J Bacteriol. 1994 Mar;176(5):1475–1481. doi: 10.1128/jb.176.5.1475-1481.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jones G. H. RNA synthesis in Streptomyces antibioticus: in vitro effects of actinomycin and transcriptional inhibitors from 48-h cells. Biochemistry. 1976 Jul 27;15(15):3331–3341. doi: 10.1021/bi00660a025. [DOI] [PubMed] [Google Scholar]
  12. Jones G. H. Regulation of phenoxazinone synthase expression in Streptomyces antibioticus. J Bacteriol. 1985 Sep;163(3):1215–1221. doi: 10.1128/jb.163.3.1215-1221.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones G. H. Ribonucleic acid synthesis in Streptomyces antibioticus: stable ribonucleic acid species synthesized by young and old cells. Biochem Biophys Res Commun. 1975 Mar 17;63(2):469–475. doi: 10.1016/0006-291x(75)90711-1. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Pedersen F. S., Kjeldgaard N. O. Analysis of the relA gene product of Escherichia coli. Eur J Biochem. 1977 Jun 1;76(1):91–97. doi: 10.1111/j.1432-1033.1977.tb11573.x. [DOI] [PubMed] [Google Scholar]
  16. Pedersen F. S., Lund E., Kjeldgaard N. O. Codon specific, tRNA dependent in vitro synthesis of ppGpp and pppGpp. Nat New Biol. 1973 May 2;243(122):13–15. [PubMed] [Google Scholar]
  17. Schreier M. H., Erni B., Staehelin T. Initiation of mammalian protein synthesis. I. Purification and characterization of seven initiation factors. J Mol Biol. 1977 Nov;116(4):727–753. doi: 10.1016/0022-2836(77)90268-6. [DOI] [PubMed] [Google Scholar]
  18. Xiao H., Kalman M., Ikehara K., Zemel S., Glaser G., Cashel M. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem. 1991 Mar 25;266(9):5980–5990. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES