Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 May;176(9):2551–2559. doi: 10.1128/jb.176.9.2551-2559.1994

The nasFEDCBA operon for nitrate and nitrite assimilation in Klebsiella pneumoniae M5al.

J T Lin 1, B S Goldman 1, V Stewart 1
PMCID: PMC205392  PMID: 8169203

Abstract

Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilation pathway. We previously identified structural genes for assimilatory nitrate and nitrite reductases, nasA and nasB, respectively. We report here our further identification of four genes, nasFEDC, upstream of the nasBA genes. The nasFEDCBA genes probably form an operon. Mutational and complementation analyses indicated that both the nasC and nasA genes are required for nitrate assimilation. The predicted NASC protein is homologous to a variety of NADH-dependent oxidoreductases. Thus, the NASC protein probably mediates electron transfer from NADH to the NASA protein, which contains the active site for nitrate reduction. The deduced NASF, NASE, and NASD proteins are homologous to the NRTA, NRTB, and NRTD proteins, respectively, that are involved in nitrate uptake in Synechococcus sp. (T. Omata, X. Andriesse, and A. Hirano, Mol. Gen. Genet. 236:193-202, 1993). Mutational and complementation studies indicated that the nasD gene is required for nitrate but not nitrite assimilation. By analogy with the Synechococcus nrt genes, we propose that the nasFED genes are involved in nitrate transport in K. pneumoniae.

Full text

PDF
2551

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Balbás P., Soberón X., Merino E., Zurita M., Lomeli H., Valle F., Flores N., Bolivar F. Plasmid vector pBR322 and its special-purpose derivatives--a review. Gene. 1986;50(1-3):3–40. doi: 10.1016/0378-1119(86)90307-0. [DOI] [PubMed] [Google Scholar]
  3. Bartolomé B., Jubete Y., Martínez E., de la Cruz F. Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene. 1991 Jun 15;102(1):75–78. doi: 10.1016/0378-1119(91)90541-i. [DOI] [PubMed] [Google Scholar]
  4. Bender R. A., Friedrich B. Regulation of assimilatory nitrate reductase formation in Klebsiella aerogenes W70. J Bacteriol. 1990 Dec;172(12):7256–7259. doi: 10.1128/jb.172.12.7256-7259.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berg B. L., Li J., Heider J., Stewart V. Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. J Biol Chem. 1991 Nov 25;266(33):22380–22385. [PubMed] [Google Scholar]
  6. Biggin M. D., Gibson T. J., Hong G. F. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963–3965. doi: 10.1073/pnas.80.13.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cali B. M., Micca J. L., Stewart V. Genetic regulation of nitrate assimilation in Klebsiella pneumoniae M5al. J Bacteriol. 1989 May;171(5):2666–2672. doi: 10.1128/jb.171.5.2666-2672.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Castilho B. A., Olfson P., Casadaban M. J. Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol. 1984 May;158(2):488–495. doi: 10.1128/jb.158.2.488-495.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crawford N. M., Arst H. N., Jr The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet. 1993;27:115–146. doi: 10.1146/annurev.ge.27.120193.000555. [DOI] [PubMed] [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doige C. A., Ames G. F. ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu Rev Microbiol. 1993;47:291–319. doi: 10.1146/annurev.mi.47.100193.001451. [DOI] [PubMed] [Google Scholar]
  12. Fellay R., Frey J., Krisch H. Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene. 1987;52(2-3):147–154. doi: 10.1016/0378-1119(87)90041-2. [DOI] [PubMed] [Google Scholar]
  13. Fuqua W. C. An improved chloramphenicol resistance gene cassette for site-directed marker replacement mutagenesis. Biotechniques. 1992 Feb;12(2):223–225. [PubMed] [Google Scholar]
  14. Furuchi T., Kashiwagi K., Kobayashi H., Igarashi K. Characteristics of the gene for a spermidine and putrescine transport system that maps at 15 min on the Escherichia coli chromosome. J Biol Chem. 1991 Nov 5;266(31):20928–20933. [PubMed] [Google Scholar]
  15. Gangeswaran R., Lowe D. J., Eady R. R. Purification and characterization of the assimilatory nitrate reductase of Azotobacter vinelandii. Biochem J. 1993 Jan 15;289(Pt 2):335–342. doi: 10.1042/bj2890335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Green L. S., Laudenbach D. E., Grossman A. R. A region of a cyanobacterial genome required for sulfate transport. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1949–1953. doi: 10.1073/pnas.86.6.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Isberg R. R., Voorhis D. L., Falkow S. Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell. 1987 Aug 28;50(5):769–778. doi: 10.1016/0092-8674(87)90335-7. [DOI] [PubMed] [Google Scholar]
  18. Jeter R. M., Sias S. R., Ingraham J. L. Chromosomal location and function of genes affecting Pseudomonas aeruginosa nitrate assimilation. J Bacteriol. 1984 Feb;157(2):673–677. doi: 10.1128/jb.157.2.673-677.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaniga K., Delor I., Cornelis G. R. A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene. 1991 Dec 20;109(1):137–141. doi: 10.1016/0378-1119(91)90599-7. [DOI] [PubMed] [Google Scholar]
  20. Kraft R., Tardiff J., Krauter K. S., Leinwand L. A. Using mini-prep plasmid DNA for sequencing double stranded templates with Sequenase. Biotechniques. 1988 Jun;6(6):544-6, 549. [PubMed] [Google Scholar]
  21. Lin J. T., Goldman B. S., Stewart V. Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al. J Bacteriol. 1993 Apr;175(8):2370–2378. doi: 10.1128/jb.175.8.2370-2378.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Luque I., Herrero A., Flores E., Madueño F. Clustering of genes involved in nitrate assimilation in the cyanobacterium Synechococcus. Mol Gen Genet. 1992 Mar;232(1):7–11. doi: 10.1007/BF00299130. [DOI] [PubMed] [Google Scholar]
  23. MacNeil D., Zhu J., Brill W. J. Regulation of nitrogen fixation in Klebsiella pneumoniae: isolation and characterization of strains with nif-lac fusions. J Bacteriol. 1981 Jan;145(1):348–357. doi: 10.1128/jb.145.1.348-357.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nagatani H., Shimizu M., Valentine R. C. The mechanism of ammonia assimilation in nitrogen fixing Bacteria. Arch Mikrobiol. 1971;79(2):164–175. doi: 10.1007/BF00424923. [DOI] [PubMed] [Google Scholar]
  25. Omata T., Andriesse X., Hirano A. Identification and characterization of a gene cluster involved in nitrate transport in the cyanobacterium Synechococcus sp. PCC7942. Mol Gen Genet. 1993 Jan;236(2-3):193–202. doi: 10.1007/BF00277112. [DOI] [PubMed] [Google Scholar]
  26. Omata T., Ohmori M., Arai N., Ogawa T. Genetically engineered mutant of the cyanobacterium Synechococcus PCC 7942 defective in nitrate transport. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6612–6616. doi: 10.1073/pnas.86.17.6612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Penfold R. J., Pemberton J. M. An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene. 1992 Sep 1;118(1):145–146. doi: 10.1016/0378-1119(92)90263-o. [DOI] [PubMed] [Google Scholar]
  28. Pistocchi R., Kashiwagi K., Miyamoto S., Nukui E., Sadakata Y., Kobayashi H., Igarashi K. Characteristics of the operon for a putrescine transport system that maps at 19 minutes on the Escherichia coli chromosome. J Biol Chem. 1993 Jan 5;268(1):146–152. [PubMed] [Google Scholar]
  29. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  30. Ramos F., Blanco G., Gutiérrez J. C., Luque F., Tortolero M. Identification of an operon involved in the assimilatory nitrate-reducing system of Azotobacter vinelandii. Mol Microbiol. 1993 Jun;8(6):1145–1153. doi: 10.1111/j.1365-2958.1993.tb01659.x. [DOI] [PubMed] [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stewart G. S., Lubinsky-Mink S., Jackson C. G., Cassel A., Kuhn J. pHG165: a pBR322 copy number derivative of pUC8 for cloning and expression. Plasmid. 1986 May;15(3):172–181. doi: 10.1016/0147-619x(86)90035-1. [DOI] [PubMed] [Google Scholar]
  33. Stewart V., MacGregor C. H. Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci. J Bacteriol. 1982 Aug;151(2):788–799. doi: 10.1128/jb.151.2.788-799.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thayer J. R., Huffaker R. C. Kinetic evaluation, using 13N, reveals two assimilatory nitrate transport systems in Klebsiella pneumoniae. J Bacteriol. 1982 Jan;149(1):198–202. doi: 10.1128/jb.149.1.198-202.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zylstra G. J., Gibson D. T. Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem. 1989 Sep 5;264(25):14940–14946. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES