Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 May;176(9):2747–2750. doi: 10.1128/jb.176.9.2747-2750.1994

Nucleotide and divalent cation specificity of in vitro iron-molybdenum cofactor synthesis.

R Chatterjee 1, R M Allen 1, V K Shah 1, P W Ludden 1
PMCID: PMC205418  PMID: 8169227

Abstract

The nucleotide and divalent cation requirements of the in vitro iron-molybdenum cofactor (FeMo-co) synthesis system have been compared with those of substrate reduction by nitrogenase. The FeMo-co synthesis system specifically requires ATP, whereas both 1,N6-etheno-ATP and 2'-deoxy-ATP function in place of ATP in substrate reduction (M. F. Weston, S. Kotake, and L. C. Davis, Arch. Biochem. Biophys. 225:809-817, 1983). Mn2+, Ca2+, and Fe2+ substitute for Mg2+ to various extents in in vitro FeMo-co synthesis, whereas Ca2+ is ineffective in substrate reduction by nitrogenase. The observed differences in the nucleotide and divalent cation specificities suggest a role(s) for the nucleotide and divalent cation in in vitro FeMo-co synthesis that is distinct from their role(s) in substrate reduction.

Full text

PDF
2747

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bulen W. A., LeComte J. R. The nitrogenase system from Azotobacter: two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution, and ATP hydrolysis. Proc Natl Acad Sci U S A. 1966 Sep;56(3):979–986. doi: 10.1073/pnas.56.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burns R. C. The nitrogenase system from Azotobacter: activation energy and divalent cation requirement. Biochim Biophys Acta. 1969 Feb 11;171(2):253–259. doi: 10.1016/0005-2744(69)90158-2. [DOI] [PubMed] [Google Scholar]
  3. Filler W. A., Kemp R. M., Ng J. C., Hawkes T. R., Dixon R. A., Smith B. E. The nifH gene product is required for the synthesis or stability of the iron-molybdenum cofactor of nitrogenase from Klebsiella pneumoniae. Eur J Biochem. 1986 Oct 15;160(2):371–377. doi: 10.1111/j.1432-1033.1986.tb09981.x. [DOI] [PubMed] [Google Scholar]
  4. Gavini N., Burgess B. K. FeMo cofactor synthesis by a nifH mutant with altered MgATP reactivity. J Biol Chem. 1992 Oct 15;267(29):21179–21186. [PubMed] [Google Scholar]
  5. Hageman R. V., Burris R. H. Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2699–2702. doi: 10.1073/pnas.75.6.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hawkes T. R., McLean P. A., Smith B. E. Nitrogenase from nifV mutants of Klebsiella pneumoniae contains an altered form of the iron-molybdenum cofactor. Biochem J. 1984 Jan 1;217(1):317–321. doi: 10.1042/bj2170317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hoover T. R., Imperial J., Ludden P. W., Shah V. K. Homocitrate is a component of the iron-molybdenum cofactor of nitrogenase. Biochemistry. 1989 Apr 4;28(7):2768–2771. doi: 10.1021/bi00433a004. [DOI] [PubMed] [Google Scholar]
  8. Joerger R. D., Bishop P. E. Nucleotide sequence and genetic analysis of the nifB-nifQ region from Azotobacter vinelandii. J Bacteriol. 1988 Apr;170(4):1475–1487. doi: 10.1128/jb.170.4.1475-1487.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ljones T., Burris R. H. Nitrogenase: the reaction between the Fe protein and bathophenanthrolinedisulfonate as a probe for interactions with MgATP. Biochemistry. 1978 May 16;17(10):1866–1872. doi: 10.1021/bi00603a010. [DOI] [PubMed] [Google Scholar]
  10. Madden M. S., Paustian T. D., Ludden P. W., Shah V. K. Effects of homocitrate, homocitrate lactone, and fluorohomocitrate on nitrogenase in NifV- mutants of Azotobacter vinelandii. J Bacteriol. 1991 Sep;173(17):5403–5405. doi: 10.1128/jb.173.17.5403-5405.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nagatani H. H., Shah V. K., Brill W. J. Activation of inactive nitrogenase by acid-treated component I. J Bacteriol. 1974 Nov;120(2):697–701. doi: 10.1128/jb.120.2.697-701.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Paustian T. D., Shah V. K., Roberts G. P. Apodinitrogenase: purification, association with a 20-kilodalton protein, and activation by the iron-molybdenum cofactor in the absence of dinitrogenase reductase. Biochemistry. 1990 Apr 10;29(14):3515–3522. doi: 10.1021/bi00466a014. [DOI] [PubMed] [Google Scholar]
  13. Paustian T. D., Shah V. K., Roberts G. P. Purification and characterization of the nifN and nifE gene products from Azotobacter vinelandii mutant UW45. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6082–6086. doi: 10.1073/pnas.86.16.6082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Robinson A. C., Dean D. R., Burgess B. K. Iron-molybdenum cofactor biosynthesis in Azotobacter vinelandii requires the iron protein of nitrogenase. J Biol Chem. 1987 Oct 15;262(29):14327–14332. [PubMed] [Google Scholar]
  15. Shah V. K., Allen J. R., Spangler N. J., Ludden P. W. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Purification and characterization of NifB cofactor, the product of NIFB protein. J Biol Chem. 1994 Jan 14;269(2):1154–1158. [PubMed] [Google Scholar]
  16. Shah V. K., Brill W. J. Isolation of an iron-molybdenum cofactor from nitrogenase. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3249–3253. doi: 10.1073/pnas.74.8.3249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shah V. K., Brill W. J. Nitrogenase. IV. Simple method of purification to homogeneity of nitrogenase components from Azotobacter vinelandii. Biochim Biophys Acta. 1973 May 30;305(2):445–454. doi: 10.1016/0005-2728(73)90190-4. [DOI] [PubMed] [Google Scholar]
  18. Shah V. K., Davis I. C., Gordon J. K., Orme-Johnson W. H., Brill W. J. Nitrogenase. 3. Nitrogenaseless mutants of Azotobacter vinelandii: activities, cross-reactions and EPR spectra. Biochim Biophys Acta. 1973 Jan 18;292(1):246–255. doi: 10.1016/0005-2728(73)90269-7. [DOI] [PubMed] [Google Scholar]
  19. Shah V. K., Davis L. C., Brill W. J. Nitrogenase. I. Repression and derepression of the iron-molybdenum and iron proteins of nitrogenase in Azotobacter vinelandii. Biochim Biophys Acta. 1972 Feb 28;256(2):498–511. doi: 10.1016/0005-2728(72)90078-3. [DOI] [PubMed] [Google Scholar]
  20. Shah V. K., Imperial J., Ugalde R. A., Ludden P. W., Brill W. J. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1636–1640. doi: 10.1073/pnas.83.6.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shah V. K., Ugalde R. A., Imperial J., Brill W. J. Inhibition of iron-molybdenum cofactor binding to component I of nitrogenase. J Biol Chem. 1985 Apr 10;260(7):3891–3894. [PubMed] [Google Scholar]
  22. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  23. Thorneley R. N., Willison K. R. Nitrogenase of Klebsiella pneumoniae. Inhibition of acetylene reduction by magnesium ion explained by the formation of an inactive dimagnesium-adenosine triphophate complex. Biochem J. 1974 Apr;139(1):211–214. doi: 10.1042/bj1390211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weston M. F., Kotake S., Davis L. C. Interaction of nitrogenase with nucleotide analogs of ATP and ADP and the effect of metal ions on ADP inhibition. Arch Biochem Biophys. 1983 Sep;225(2):809–817. doi: 10.1016/0003-9861(83)90093-0. [DOI] [PubMed] [Google Scholar]
  25. Wolle D., Dean D. R., Howard J. B. Nucleotide-iron-sulfur cluster signal transduction in the nitrogenase iron-protein: the role of Asp125. Science. 1992 Nov 6;258(5084):992–995. doi: 10.1126/science.1359643. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES