Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Jun;176(11):3218–3223. doi: 10.1128/jb.176.11.3218-3223.1994

Biochemical properties of a novel metalloprotease from Staphylococcus hyicus subsp. hyicus involved in extracellular lipase processing.

S Ayora 1, P E Lindgren 1, F Götz 1
PMCID: PMC205491  PMID: 8195076

Abstract

Two extracellular proteases from Staphylococcus hyicus subsp. hyicus, ShpI and ShpII, have been characterized. ShpI is a neutral metalloprotease with broad substrate specificity; the gene has been cloned and sequenced. ShpII, characterized here, is mainly produced in the late logarithmic growth phase in contrast to ShpI, which is mainly produced in the late stationary growth phase. ShpII was purified from culture medium of S. hyicus by ammonium sulfate precipitation and DEAE-Sepharose chromatography. The molecular mass, estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 34 kDa. The temperature optimum of ShpII was 55 degrees C, and the pH optimum was 7.4. ShpII, a neutral metalloprotease, was strongly inhibited by zinc and calcium chelators. The amino-terminal sequence of the active enzyme was similar to the corresponding region of a Staphylococcus epidermidis metalloprotease. The substrate specificity of ShpII was similar to that of thermolysin-like proteases, with the exception that ShpII also recognized aromatic amino acids. We demonstrated in vitro that ShpII, but not ShpI, cleaved the 86-kDa S. hyicus subsp. hyicus prolipase between Thr-245 and Val-246 to generate the mature 46-kDa lipase. Results of additional in vivo experiments supported the model that ShpII is necessary for the extracellular processing and maturation of S. hyicus subsp. hyicus lipase.

Full text

PDF
3218

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvidson S. Studies on extracellular proteolytic enzymes from Staphylococcus aureus. II. Isolation and characterization of an EDTA-sensitive protease. Biochim Biophys Acta. 1973 Mar 15;302(1):149–157. doi: 10.1016/0005-2744(73)90017-x. [DOI] [PubMed] [Google Scholar]
  2. Ayora S., Götz F. Genetic and biochemical properties of an extracellular neutral metalloprotease from Staphylococcus hyicus subsp. hyicus. Mol Gen Genet. 1994 Feb;242(4):421–430. doi: 10.1007/BF00281792. [DOI] [PubMed] [Google Scholar]
  3. Bjoörklind A., Jörnvall H. Substrate specificity of three different extracellular proteolytic enzymes from Staphylococcus aureus. Biochim Biophys Acta. 1974 Dec 29;370(2):524–529. doi: 10.1016/0005-2744(74)90113-2. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Desmazeaud M. J., Hermier J. H. Spécificité de la protéase neutre de Micrococcus caseolyticus. Eur J Biochem. 1971 Mar 1;19(1):51–55. doi: 10.1111/j.1432-1033.1971.tb01286.x. [DOI] [PubMed] [Google Scholar]
  6. Drapeau G. R. Role of metalloprotease in activation of the precursor of staphylococcal protease. J Bacteriol. 1978 Nov;136(2):607–613. doi: 10.1128/jb.136.2.607-613.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feder J. A spectrophotometric assay for neutral protease. Biochem Biophys Res Commun. 1968 Jul 26;32(2):326–332. doi: 10.1016/0006-291x(68)90389-6. [DOI] [PubMed] [Google Scholar]
  8. Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972 Jul 7;238(5358):37–38. doi: 10.1038/238037a0. [DOI] [PubMed] [Google Scholar]
  9. Götz F., Popp F., Korn E., Schleifer K. H. Complete nucleotide sequence of the lipase gene from Staphylococcus hyicus cloned in Staphylococcus carnosus. Nucleic Acids Res. 1985 Aug 26;13(16):5895–5906. doi: 10.1093/nar/13.16.5895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Liebl W., Götz F. Studies on lipase directed export of Escherichia coli beta-lactamase in Staphylococcus carnosus. Mol Gen Genet. 1986 Jul;204(1):166–173. doi: 10.1007/BF00330205. [DOI] [PubMed] [Google Scholar]
  11. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  12. Rollof J., Normark S. In vivo processing of Staphylococcus aureus lipase. J Bacteriol. 1992 Mar;174(6):1844–1847. doi: 10.1128/jb.174.6.1844-1847.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  14. Takeuchi S., Kobayashi Y., Morozumi T. Proteolytic zymograms of Staphylococcus hyicus subsp. hyicus isolated from pigs, chickens and cows. Vet Microbiol. 1987 May;14(1):47–52. doi: 10.1016/0378-1135(87)90051-4. [DOI] [PubMed] [Google Scholar]
  15. Takeuchi S., Kobayashi Y., Morozumi T. Purification and some properties of protease produced by Staphylococcus hyicus subsp. hyicus strain No. 111. Nihon Juigaku Zasshi. 1985 Oct;47(5):769–775. doi: 10.1292/jvms1939.47.769. [DOI] [PubMed] [Google Scholar]
  16. Teufel P., Götz F. Characterization of an extracellular metalloprotease with elastase activity from Staphylococcus epidermidis. J Bacteriol. 1993 Jul;175(13):4218–4224. doi: 10.1128/jb.175.13.4218-4224.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wandersman C. Secretion, processing and activation of bacterial extracellular proteases. Mol Microbiol. 1989 Dec;3(12):1825–1831. doi: 10.1111/j.1365-2958.1989.tb00169.x. [DOI] [PubMed] [Google Scholar]
  18. Wasylewski Z., Stryjewski W., Waśniowska A., Potempa J., Baran K. Effect of calcium binding on conformational changes of staphylococcal metalloproteinase measured by means of intrinsic protein fluorescence. Biochim Biophys Acta. 1986 Jun 5;871(2):177–181. doi: 10.1016/0167-4838(86)90171-8. [DOI] [PubMed] [Google Scholar]
  19. Weaver L. H., Kester W. R., Matthews B. W. A crystallographic study of the complex of phosphoramidon with thermolysin. A model for the presumed catalytic transition state and for the binding of extended substances. J Mol Biol. 1977 Jul;114(1):119–132. doi: 10.1016/0022-2836(77)90286-8. [DOI] [PubMed] [Google Scholar]
  20. van Oort M. G., Deveer A. M., Dijkman R., Tjeenk M. L., Verheij H. M., de Haas G. H., Wenzig E., Götz F. Purification and substrate specificity of Staphylococcus hyicus lipase. Biochemistry. 1989 Nov 28;28(24):9278–9285. doi: 10.1021/bi00450a007. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES