Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Jul;176(14):4250–4259. doi: 10.1128/jb.176.14.4250-4259.1994

Genetic insertion and exposure of a reporter epitope in the ferrichrome-iron receptor of Escherichia coli K-12.

G S Moeck 1, B S Bazzaz 1, M F Gras 1, T S Ravi 1, M J Ratcliffe 1, J W Coulton 1
PMCID: PMC205636  PMID: 7517392

Abstract

The ferrichrome-iron receptor of Escherichia coli K-12 is FhuA (M(r), 78,992), the first component of an energy-dependent, high-affinity iron uptake pathway. FhuA is also the cognate receptor for bacteriophages T5, T1, phi 80, and UC-1, for colicin M and microcin 25, and for albomycin. To probe the topological organization of FhuA which enables recognition of these different ligands, we generated a library of 16 insertion mutations within the fhuA gene. Each insertion spliced a 13-amino-acid antigenic determinant (the C3 epitope of poliovirus) at a different position within FhuA. Immunoblotting of outer membranes with anti-FhuA and anti-C3 antibodies indicated that 15 of 16 FhuA.C3 proteins were present in the outer membrane in amounts similar to that observed for plasmid-encoded wild-type FhuA. One chimeric protein with the C3 epitope inserted after amino acid 440 of FhuA was present in the outer membrane in greatly reduced amounts. Strains overexpressing FhuA.C3 proteins were subjected to flow cytometric analysis using anti-FhuA monoclonal antibodies. Such analysis showed that (i) the chimeric proteins were properly localized and (ii) the wild-type FhuA protein structure had not been grossly altered by insertion of the C3 epitope. Twelve of sixteen strains expressing FhuA.C3 proteins were proficient in ferrichrome transport and remained sensitive to FhuA-specific phages. Three FhuA.C3 proteins, with insertions after amino acid 321, 405, or 417 of FhuA, were detected at the cell surface by flow cytometry using anti-C3 antibodies. These three chimeric proteins were all biologically active. We conclude that amino acids 321, 405, and 417 are surface accessible in wild-type FhuA.

Full text

PDF
4250

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentley A. T., Klebba P. E. Effect of lipopolysaccharide structure on reactivity of antiporin monoclonal antibodies with the bacterial cell surface. J Bacteriol. 1988 Mar;170(3):1063–1068. doi: 10.1128/jb.170.3.1063-1068.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blondel B., Akacem O., Crainic R., Couillin P., Horodniceanu F. Detection by monoclonal antibodies of an antigenic determinant critical for poliovirus neutralization present on VP1 and on heat-inactivated virions. Virology. 1983 Apr 30;126(2):707–710. doi: 10.1016/s0042-6822(83)80027-0. [DOI] [PubMed] [Google Scholar]
  3. Boulain J. C., Charbit A., Hofnung M. Mutagenesis by random linker insertion into the lamB gene of Escherichia coli K12. Mol Gen Genet. 1986 Nov;205(2):339–348. doi: 10.1007/BF00430448. [DOI] [PubMed] [Google Scholar]
  4. Bäumler A. J., Hantke K. Ferrioxamine uptake in Yersinia enterocolitica: characterization of the receptor protein FoxA. Mol Microbiol. 1992 May;6(10):1309–1321. doi: 10.1111/j.1365-2958.1992.tb00852.x. [DOI] [PubMed] [Google Scholar]
  5. Carmel G., Coulton J. W. Internal deletions in the FhuA receptor of Escherichia coli K-12 define domains of ligand interactions. J Bacteriol. 1991 Jul;173(14):4394–4403. doi: 10.1128/jb.173.14.4394-4403.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carmel G., Hellstern D., Henning D., Coulton J. W. Insertion mutagenesis of the gene encoding the ferrichrome-iron receptor of Escherichia coli K-12. J Bacteriol. 1990 Apr;172(4):1861–1869. doi: 10.1128/jb.172.4.1861-1869.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Charbit A., Boulain J. C., Ryter A., Hofnung M. Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope; expression at the cell surface. EMBO J. 1986 Nov;5(11):3029–3037. doi: 10.1002/j.1460-2075.1986.tb04602.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Charbit A., Clement J. M., Hofnung M. Further sequence analysis of the phage lambda receptor site. Possible implications for the organization of the lamB protein in Escherichia coli K12. J Mol Biol. 1984 May 25;175(3):395–401. doi: 10.1016/0022-2836(84)90355-3. [DOI] [PubMed] [Google Scholar]
  9. Charbit A., Molla A., Saurin W., Hofnung M. Versatility of a vector for expressing foreign polypeptides at the surface of gram-negative bacteria. Gene. 1988 Oct 15;70(1):181–189. doi: 10.1016/0378-1119(88)90116-3. [DOI] [PubMed] [Google Scholar]
  10. Charbit A., Ronco J., Michel V., Werts C., Hofnung M. Permissive sites and topology of an outer membrane protein with a reporter epitope. J Bacteriol. 1991 Jan;173(1):262–275. doi: 10.1128/jb.173.1.262-275.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coulton J. W., Mason P., Cameron D. R., Carmel G., Jean R., Rode H. N. Protein fusions of beta-galactosidase to the ferrichrome-iron receptor of Escherichia coli K-12. J Bacteriol. 1986 Jan;165(1):181–192. doi: 10.1128/jb.165.1.181-192.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Coulton J. W., Mason P., DuBow M. S. Molecular cloning of the ferrichrome-iron receptor of Escherichia coli K-12. J Bacteriol. 1983 Dec;156(3):1315–1321. doi: 10.1128/jb.156.3.1315-1321.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Coulton J. W., Reid G. K., Campana A. Export of hybrid proteins FhuA'-'LacZ and FhuA'-'PhoA to the cell envelope of Escherichia coli K-12. J Bacteriol. 1988 May;170(5):2267–2275. doi: 10.1128/jb.170.5.2267-2275.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hantke K. Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet. 1981;182(2):288–292. doi: 10.1007/BF00269672. [DOI] [PubMed] [Google Scholar]
  15. Heller K. J. Molecular interaction between bacteriophage and the gram-negative cell envelope. Arch Microbiol. 1992;158(4):235–248. doi: 10.1007/BF00245239. [DOI] [PubMed] [Google Scholar]
  16. Horaud F., Crainic R., Van der Werf S., Blondel B., Wichowski C., Akacem O., Bruneau P., Couillin P., Siffert O., Girard M. Identification and characterization of a continuous neutralization epitope (C3) present on type 1 poliovirus. Prog Med Virol. 1987;34:129–155. [PubMed] [Google Scholar]
  17. Killmann H., Benz R., Braun V. Conversion of the FhuA transport protein into a diffusion channel through the outer membrane of Escherichia coli. EMBO J. 1993 Aug;12(8):3007–3016. doi: 10.1002/j.1460-2075.1993.tb05969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Killmann H., Braun V. An aspartate deletion mutation defines a binding site of the multifunctional FhuA outer membrane receptor of Escherichia coli K-12. J Bacteriol. 1992 Jun;174(11):3479–3486. doi: 10.1128/jb.174.11.3479-3486.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klena J. D., Ashford R. S., 2nd, Schnaitman C. A. Role of Escherichia coli K-12 rfa genes and the rfp gene of Shigella dysenteriae 1 in generation of lipopolysaccharide core heterogeneity and attachment of O antigen. J Bacteriol. 1992 Nov;174(22):7297–7307. doi: 10.1128/jb.174.22.7297-7307.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koebnik R., Braun V. Insertion derivatives containing segments of up to 16 amino acids identify surface- and periplasm-exposed regions of the FhuA outer membrane receptor of Escherichia coli K-12. J Bacteriol. 1993 Feb;175(3):826–839. doi: 10.1128/jb.175.3.826-839.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murphy C. K., Kalve V. I., Klebba P. E. Surface topology of the Escherichia coli K-12 ferric enterobactin receptor. J Bacteriol. 1990 May;172(5):2736–2746. doi: 10.1128/jb.172.5.2736-2746.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Murphy C. K., Klebba P. E. Export of FepA::PhoA fusion proteins to the outer membrane of Escherichia coli K-12. J Bacteriol. 1989 Nov;171(11):5894–5900. doi: 10.1128/jb.171.11.5894-5900.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rutz J. M., Liu J., Lyons J. A., Goranson J., Armstrong S. K., McIntosh M. A., Feix J. B., Klebba P. E. Formation of a gated channel by a ligand-specific transport protein in the bacterial outer membrane. Science. 1992 Oct 16;258(5081):471–475. doi: 10.1126/science.1411544. [DOI] [PubMed] [Google Scholar]
  24. Salomón R. A., Farías R. N. Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol. 1992 Nov;174(22):7428–7435. doi: 10.1128/jb.174.22.7428-7435.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Salomón R. A., Farías R. N. The FhuA protein is involved in microcin 25 uptake. J Bacteriol. 1993 Dec;175(23):7741–7742. doi: 10.1128/jb.175.23.7741-7742.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schenkman S., Couture E., Schwartz M. Monoclonal antibodies reveal lamB antigenic determinants on both faces of the Escherichia coli outer membrane. J Bacteriol. 1983 Sep;155(3):1382–1392. doi: 10.1128/jb.155.3.1382-1392.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schnaitman C. A., Klena J. D. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev. 1993 Sep;57(3):655–682. doi: 10.1128/mr.57.3.655-682.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Skare J. T., Ahmer B. M., Seachord C. L., Darveau R. P., Postle K. Energy transduction between membranes. TonB, a cytoplasmic membrane protein, can be chemically cross-linked in vivo to the outer membrane receptor FepA. J Biol Chem. 1993 Aug 5;268(22):16302–16308. [PubMed] [Google Scholar]
  29. Skare J. T., Postle K. Evidence for a TonB-dependent energy transduction complex in Escherichia coli. Mol Microbiol. 1991 Dec;5(12):2883–2890. doi: 10.1111/j.1365-2958.1991.tb01848.x. [DOI] [PubMed] [Google Scholar]
  30. Srikumar R., Dahan D., Gras M. F., Ratcliffe M. J., van Alphen L., Coulton J. W. Antigenic sites on porin of Haemophilus influenzae type b: mapping with synthetic peptides and evaluation of structure predictions. J Bacteriol. 1992 Jun;174(12):4007–4016. doi: 10.1128/jb.174.12.4007-4016.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Taylor I. M., Harrison J. L., Timmis K. N., O'Connor C. D. The TraT lipoprotein as a vehicle for the transport of foreign antigenic determinants to the cell surface of Escherichia coli K12: structure-function relationships in the TraT protein. Mol Microbiol. 1990 Aug;4(8):1259–1268. doi: 10.1111/j.1365-2958.1990.tb00705.x. [DOI] [PubMed] [Google Scholar]
  32. Wychowski C., van der Werf S., Siffert O., Crainic R., Bruneau P., Girard M. A poliovirus type 1 neutralization epitope is located within amino acid residues 93 to 104 of viral capsid polypeptide VP1. EMBO J. 1983;2(11):2019–2024. doi: 10.1002/j.1460-2075.1983.tb01694.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. van der Werf S., Wychowski C., Bruneau P., Blondel B., Crainic R., Horodniceanu F., Girard M. Localization of a poliovirus type 1 neutralization epitope in viral capsid polypeptide VP1. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5080–5084. doi: 10.1073/pnas.80.16.5080. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES