Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Jul;176(14):4376–4384. doi: 10.1128/jb.176.14.4376-4384.1994

Insertional activation of cepA leads to high-level beta-lactamase expression in Bacteroides fragilis clinical isolates.

M B Rogers 1, T K Bennett 1, C M Payne 1, C J Smith 1
PMCID: PMC205651  PMID: 7517394

Abstract

Bacteroides fragilis is an important opportunistic pathogen of humans and is resistant to many drugs commonly used to treat anaerobic infections, including beta-lactams. A strain set comprised of B. fragilis isolates producing either low or high levels of the endogenous cephalosporinase activity, CepA, has been described previously (M. B. Rogers, A. C. Parker, and C. J. Smith, Antimicrob. Agents Chemother. 37:2391-2400, 1993). Clones containing cepA genes from each of seven representative strains were isolated, and the DNA sequences were determined. Nucleotide sequence comparisons revealed that there were few differences between the cepA coding sequences of the low- and high-activity strains. The cepA coding sequences were cloned into an expression vector, pFD340, and analyzed in a B. fragilis 638 cepA mutant. The results of beta-lactamase assays and ampicillin MICs showed that there was no significant difference in the enzymatic activity of structural genes from the high- or low-activity strains. Comparison of sequences upstream of the cepA coding region revealed that 50 bp prior to the translation start codon, the sequence for high-activity strains change dramatically. This region of the high-activity strains shared extensive homology with IS21, suggesting that an insertion was responsible for the increased expression of cepA in these isolates. Northern (RNA) blot analysis of total RNA by using cepA-specific DNA probes supported the idea that differential cepA expression in low- and high-activity strains was controlled at the level of transcription. However, the insertion did not alter the cepA transcription start site, which occurred 27 bp upstream of the ATG translation start codon in both expression classes. Possible mechanisms of cepA activation are discussed.

Full text

PDF
4376

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiba H., Adhya S., de Crombrugghe B. Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem. 1981 Nov 25;256(22):11905–11910. [PubMed] [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boorstein W. R., Craig E. A. Primer extension analysis of RNA. Methods Enzymol. 1989;180:347–369. doi: 10.1016/0076-6879(89)80111-9. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Britz M. L., Wilkinson R. G. Purification and properties of beta-lactamase from Bacteroides fragilis. Antimicrob Agents Chemother. 1978 Mar;13(3):373–382. doi: 10.1128/aac.13.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cornick N. A., Cuchural G. J., Jr, Snydman D. R., Jacobus N. V., Iannini P., Hill G., Cleary T., O'Keefe J. P., Pierson C., Finegold S. M. The antimicrobial susceptibility patterns of the Bacteroides fragilis group in the United States, 1987. J Antimicrob Chemother. 1990 Jun;25(6):1011–1019. doi: 10.1093/jac/25.6.1011. [DOI] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edwards R., Greenwood D. An investigation of beta-lactamases from clinical isolates of Bacteroides species. J Med Microbiol. 1992 Feb;36(2):89–95. doi: 10.1099/00222615-36-2-89. [DOI] [PubMed] [Google Scholar]
  9. Eley A., Greenwood D. Characterization of beta-lactamases in clinical isolates of Bacteroides. J Antimicrob Chemother. 1986 Sep;18(3):325–333. doi: 10.1093/jac/18.3.325. [DOI] [PubMed] [Google Scholar]
  10. Goussard S., Sougakoff W., Mabilat C., Bauernfeind A., Courvalin P. An IS1-like element is responsible for high-level synthesis of extended-spectrum beta-lactamase TEM-6 in Enterobacteriaceae. J Gen Microbiol. 1991 Dec;137(12):2681–2687. doi: 10.1099/00221287-137-12-2681. [DOI] [PubMed] [Google Scholar]
  11. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  12. Jacoby G. A., Medeiros A. A. More extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991 Sep;35(9):1697–1704. doi: 10.1128/aac.35.9.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jaurin B., Normark S. Insertion of IS2 creates a novel ampC promoter in Escherichia coli. Cell. 1983 Mar;32(3):809–816. doi: 10.1016/0092-8674(83)90067-3. [DOI] [PubMed] [Google Scholar]
  14. Liao H. H., Rabinowitz J. C. Clostridial apoferredoxin messenger ribonucleic acid. Assay and partial purification. Biochim Biophys Acta. 1980 Jul 29;608(2):301–314. doi: 10.1016/0005-2787(80)90176-8. [DOI] [PubMed] [Google Scholar]
  15. Nord C. E., Hedberg M. Resistance to beta-lactam antibiotics in anaerobic bacteria. Rev Infect Dis. 1990 Jan-Feb;12 (Suppl 2):S231–S234. doi: 10.1093/clinids/12.supplement_2.s231. [DOI] [PubMed] [Google Scholar]
  16. Nord C. E., Olsson-Liljequist B. Resistance to beta-lactam antibiotics in Bacteroides species. J Antimicrob Chemother. 1981 Dec;8 (Suppl 500):33–42. doi: 10.1093/jac/8.suppl_d.33. [DOI] [PubMed] [Google Scholar]
  17. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Parker A. C., Smith C. J. Genetic and biochemical analysis of a novel Ambler class A beta-lactamase responsible for cefoxitin resistance in Bacteroides species. Antimicrob Agents Chemother. 1993 May;37(5):1028–1036. doi: 10.1128/aac.37.5.1028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Privitera G., Dublanchet A., Sebald M. Transfer of multiple antibiotic resistance between subspecies of Bacteroides fragilis. J Infect Dis. 1979 Jan;139(1):97–101. doi: 10.1093/infdis/139.1.97. [DOI] [PubMed] [Google Scholar]
  20. Rasmussen B. A., Bush K., Tally F. P. Antimicrobial resistance in Bacteroides. Clin Infect Dis. 1993 Jun;16 (Suppl 4):S390–S400. doi: 10.1093/clinids/16.supplement_4.s390. [DOI] [PubMed] [Google Scholar]
  21. Rasmussen B. A., Gluzman Y., Tally F. P. Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL3636. Antimicrob Agents Chemother. 1990 Aug;34(8):1590–1592. doi: 10.1128/aac.34.8.1590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rasmussen B. A., Kovacs E. Identification and DNA sequence of a new Bacteroides fragilis insertion sequence-like element. Plasmid. 1991 Mar;25(2):141–144. doi: 10.1016/0147-619x(91)90027-t. [DOI] [PubMed] [Google Scholar]
  23. Rasmussen J. L., Odelson D. A., Macrina F. L. Complete nucleotide sequence and transcription of ermF, a macrolide-lincosamide-streptogramin B resistance determinant from Bacteroides fragilis. J Bacteriol. 1986 Nov;168(2):523–533. doi: 10.1128/jb.168.2.523-533.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rasmussen J. L., Odelson D. A., Macrina F. L. Complete nucleotide sequence of insertion element IS4351 from Bacteroides fragilis. J Bacteriol. 1987 Aug;169(8):3573–3580. doi: 10.1128/jb.169.8.3573-3580.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reimmann C., Haas D. The istA gene of insertion sequence IS21 is essential for cleavage at the inner 3' ends of tandemly repeated IS21 elements in vitro. EMBO J. 1990 Dec;9(12):4055–4063. doi: 10.1002/j.1460-2075.1990.tb07627.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reimmann C., Moore R., Little S., Savioz A., Willetts N. S., Haas D. Genetic structure, function and regulation of the transposable element IS21. Mol Gen Genet. 1989 Feb;215(3):416–424. doi: 10.1007/BF00427038. [DOI] [PubMed] [Google Scholar]
  27. Rogers M. B., Parker A. C., Smith C. J. Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A beta-lactamases. Antimicrob Agents Chemother. 1993 Nov;37(11):2391–2400. doi: 10.1128/aac.37.11.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schnetz K., Rak B. IS5: a mobile enhancer of transcription in Escherichia coli. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1244–1248. doi: 10.1073/pnas.89.4.1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schurter W., Holloway B. W. Genetic analysis of promoters on the insertion sequence IS21 of plasmid R68.45. Plasmid. 1986 Jan;15(1):8–18. doi: 10.1016/0147-619x(86)90010-7. [DOI] [PubMed] [Google Scholar]
  31. Shoemaker N. B., Getty C., Gardner J. F., Salyers A. A. Tn4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome. J Bacteriol. 1986 Mar;165(3):929–936. doi: 10.1128/jb.165.3.929-936.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith C. J. Characterization of Bacteroides ovatus plasmid pBI136 and structure of its clindamycin resistance region. J Bacteriol. 1985 Mar;161(3):1069–1073. doi: 10.1128/jb.161.3.1069-1073.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Smith C. J. Nucleotide sequence analysis of Tn4551: use of ermFS operon fusions to detect promoter activity in Bacteroides fragilis. J Bacteriol. 1987 Oct;169(10):4589–4596. doi: 10.1128/jb.169.10.4589-4596.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smith C. J., Rogers M. B., McKee M. L. Heterologous gene expression in Bacteroides fragilis. Plasmid. 1992 Mar;27(2):141–154. doi: 10.1016/0147-619x(92)90014-2. [DOI] [PubMed] [Google Scholar]
  35. Southern J. A., Parker J. R., Woods D. R. Expression and purification of glutamine synthetase cloned from Bacteroides fragilis. J Gen Microbiol. 1986 Oct;132(10):2827–2835. doi: 10.1099/00221287-132-10-2827. [DOI] [PubMed] [Google Scholar]
  36. Thompson J. S., Malamy M. H. Sequencing the gene for an imipenem-cefoxitin-hydrolyzing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus beta-lactamase II. J Bacteriol. 1990 May;172(5):2584–2593. doi: 10.1128/jb.172.5.2584-2593.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES