Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Jan;174(1):161–165. doi: 10.1128/jb.174.1.161-165.1992

Role of glycosylation and deglycosylation in biosynthesis of and resistance to oleandomycin in the producer organism, Streptomyces antibioticus.

C Vilches 1, C Hernandez 1, C Mendez 1, J A Salas 1
PMCID: PMC205690  PMID: 1530845

Abstract

Cell extracts of Streptomyces antibioticus, an oleandomycin producer, can inactivate oleandomycin in the presence of UDP-glucose. The inactivation can be detected through the loss of biological activity or by alteration in the chromatographic mobility of the antibiotic. This enzyme activity also inactivates other macrolides (rosaramicin, methymycin, and lankamycin) which contain a free 2'-OH group in a monosaccharide linked to the lactone ring (with the exception of erythromycin), but not those which contain a disaccharide (tylosin, spiramycin, carbomycin, josamycin, niddamycin, and relomycin). Interestingly, the culture supernatant contains another enzyme activity capable of reactivating the glycosylated oleandomycin and regenerating the biological activity through the release of a glucose molecule. It is proposed that these two enzyme activities could be an integral part of the oleandomycin biosynthetic pathway.

Full text

PDF
161

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birmingham V. A., Cox K. L., Larson J. L., Fishman S. E., Hershberger C. L., Seno E. T. Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae. Mol Gen Genet. 1986 Sep;204(3):532–539. doi: 10.1007/BF00331036. [DOI] [PubMed] [Google Scholar]
  2. Cundliffe E. How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol. 1989;43:207–233. doi: 10.1146/annurev.mi.43.100189.001231. [DOI] [PubMed] [Google Scholar]
  3. Epp J. K., Burgett S. G., Schoner B. E. Cloning and nucleotide sequence of a carbomycin-resistance gene from Streptomyces thermotolerans. Gene. 1987;53(1):73–83. doi: 10.1016/0378-1119(87)90094-1. [DOI] [PubMed] [Google Scholar]
  4. Fierro J. F., Hardisson C., Salas J. A. Resistance to oleandomycin in Streptomyces antibioticus, the producer organism. J Gen Microbiol. 1987 Jul;133(7):1931–1939. doi: 10.1099/00221287-133-7-1931. [DOI] [PubMed] [Google Scholar]
  5. Hardisson C., Manzanal M. B., Salas J. A., Suárez J. E. Fine structure, physiology and biochemistry of arthrospore germination in Streptomyces antibioticus. J Gen Microbiol. 1978 Apr;105(2):203–214. doi: 10.1099/00221287-105-2-203. [DOI] [PubMed] [Google Scholar]
  6. Kumada Y., Anzai H., Takano E., Murakami T., Hara O., Itoh R., Imai S., Satoh A., Nagaoka K. The bialaphos resistance gene (bar) plays a role in both self-defense and bialaphos biosynthesis in Streptomyces hygroscopicus. J Antibiot (Tokyo) 1988 Dec;41(12):1838–1845. doi: 10.7164/antibiotics.41.1838. [DOI] [PubMed] [Google Scholar]
  7. Kuo M. S., Chirby D. G., Argoudelis A. D., Cialdella J. I., Coats J. H., Marshall V. P. Microbial glycosylation of erythromycin A. Antimicrob Agents Chemother. 1989 Dec;33(12):2089–2091. doi: 10.1128/aac.33.12.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Marshall V. P., Cialdella J. I., Baczynskyj L., Liggett W. F., Johnson R. A. Microbial O-phosphorylation of macrolide antibiotics. J Antibiot (Tokyo) 1989 Jan;42(1):132–134. doi: 10.7164/antibiotics.42.132. [DOI] [PubMed] [Google Scholar]
  9. Miller A. L., Walker J. B. Accumulation of streptomycin-phosphate in cultures of streptomycin producers grown on a high-phosphate medium. J Bacteriol. 1970 Oct;104(1):8–12. doi: 10.1128/jb.104.1.8-12.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. O'Hara K., Kanda T., Kono M. Structure of a phosphorylated derivative of oleandomycin, obtained by reaction of oleandomycin with an extract of an erythromycin-resistant strain of Escherichia coli. J Antibiot (Tokyo) 1988 Jun;41(6):823–827. doi: 10.7164/antibiotics.41.823. [DOI] [PubMed] [Google Scholar]
  11. Richardson M. A., Kuhstoss S., Solenberg P., Schaus N. A., Rao R. N. A new shuttle cosmid vector, pKC505, for streptomycetes: its use in the cloning of three different spiramycin-resistance genes from a Streptomyces ambofaciens library. Gene. 1987;61(3):231–241. doi: 10.1016/0378-1119(87)90187-9. [DOI] [PubMed] [Google Scholar]
  12. Skinner R., Cundliffe E., Schmidt F. J. Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J Biol Chem. 1983 Oct 25;258(20):12702–12706. [PubMed] [Google Scholar]
  13. Thompson C. J., Ward J. M., Hopwood D. A. Cloning of antibiotic resistance and nutritional genes in streptomycetes. J Bacteriol. 1982 Aug;151(2):668–677. doi: 10.1128/jb.151.2.668-677.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vara J., Perez-Gonzalez J. A., Jimenez A. Biosynthesis of puromycin by Streptomyces alboniger: characterization of puromycin N-acetyltransferase. Biochemistry. 1985 Dec 31;24(27):8074–8081. doi: 10.1021/bi00348a036. [DOI] [PubMed] [Google Scholar]
  15. Vilches C., Méndez C., Hardisson C., Salas J. A. Biosynthesis of oleandomycin by Streptomyces antibioticus: influence of nutritional conditions and development of resistance. J Gen Microbiol. 1990 Aug;136(8):1447–1454. doi: 10.1099/00221287-136-8-1447. [DOI] [PubMed] [Google Scholar]
  16. Vining L. C. Antibiotic tolerance in producer organisms. Adv Appl Microbiol. 1979;25:147–168. doi: 10.1016/s0065-2164(08)70149-7. [DOI] [PubMed] [Google Scholar]
  17. Weisblum B. Inducible resistance to macrolides, lincosamides and streptogramin type B antibiotics: the resistance phenotype, its biological diversity, and structural elements that regulate expression--a review. J Antimicrob Chemother. 1985 Jul;16 (Suppl A):63–90. doi: 10.1093/jac/16.suppl_a.63. [DOI] [PubMed] [Google Scholar]
  18. Wiley P. F., Baczynskyj L., Dolak L. A., Cialdella J. I., Marshall V. P. Enzymatic phosphorylation of macrolide antibiotics. J Antibiot (Tokyo) 1987 Feb;40(2):195–201. doi: 10.7164/antibiotics.40.195. [DOI] [PubMed] [Google Scholar]
  19. Zalacain M., Cundliffe E. Methylation of 23S rRNA caused by tlrA (ermSF), a tylosin resistance determinant from Streptomyces fradiae. J Bacteriol. 1989 Aug;171(8):4254–4260. doi: 10.1128/jb.171.8.4254-4260.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zalacain M., Cundliffe E. Methylation of 23S ribosomal RNA due to carB, an antibiotic-resistance determinant from the carbomycin producer, Streptomyces thermotolerans. Eur J Biochem. 1990 Apr 20;189(1):67–72. doi: 10.1111/j.1432-1033.1990.tb15460.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES