Abstract
The lipid A component of meningococcal lipopolysaccharide was structurally characterized by using chemical modification methods, methylation analysis, 31P nuclear magnetic resonance, and laser desorption mass spectroscopy. It was shown that Neisseria meningitidis lipid A consists of a 1,4'-bisphosphorylated beta(1'----6)-linked D-glucosamine disaccharide (lipid A backbone), both phosphate groups being largely replaced by O-phosphorylethanolamine. This disaccharide harbors two nonsubstituted hydroxyl groups at positions 4 and 6', the latter representing the attachment site of the oligosaccharide portion in lipopolysaccharide. In addition, it is substituted by up to six fatty acid residues. In the major lipid A component, representing a hexaacyl species, the hydroxyl groups at positions 3 and 3' carry (R)-3-hydroxydodecanoic acid [12:0(3-OH)], whereas the amino groups at positions 2 and 2' are substituted by (R)-3-(dodecanoyloxy)tetradecanoic acid [3-O(12:0)-14:0]. A minor portion was present as a tetraacyl lipid A component lacking either dodecanoic acid (12:0) or 12:0 and 12:0(3-OH). N. meningitidis lipid A, therefore, significantly differs from Escherichia coli lipid A by the nature and locations of fatty acids and the substitution of O-phosphorylethanolamine for the nonglycosyl (4'-P) and glycosyl phosphate.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams G. A., Kates M., Shaw D. H., Yaguchi M. Studies on the chemical constitution of cell-wall lipopolysaccharides from Neisseria perflava. Can J Biochem. 1968 Oct;46(10):1175–1184. doi: 10.1139/o68-176. [DOI] [PubMed] [Google Scholar]
- Adams G. A. Structural investigations on a cell-wall lipopolysaccharide from Neisseria sicca. Can J Biochem. 1971 Feb;49(2):243–250. doi: 10.1139/o71-035. [DOI] [PubMed] [Google Scholar]
- Adams G. A., Tornabene T. G., Yaguchi M. Cell wall lipopolysaccharides from Neisseria catarrhalis. Can J Microbiol. 1969 Apr;15(4):365–374. doi: 10.1139/m69-067. [DOI] [PubMed] [Google Scholar]
- Andersen B. M. Disease and mortality caused by Neisseria meningitidis. The role of endotoxin liberation as a virulence factor. J Oslo City Hosp. 1983 Apr-May;33(4-5):37–68. [PubMed] [Google Scholar]
- Andersen B. M. Mortality in meningococcal infections. Scand J Infect Dis. 1978;10(4):277–282. doi: 10.3109/inf.1978.10.issue-4.04. [DOI] [PubMed] [Google Scholar]
- Andersen B. M., Solberg O., Bryn K., Frøholm L. O., Gaustad P., Høiby E. A., Kristiansen B. E., Bøvre K. Endotoxin liberation from Neisseria meningitidis isolated from carriers and clinical cases. Scand J Infect Dis. 1987;19(4):409–419. doi: 10.3109/00365548709021673. [DOI] [PubMed] [Google Scholar]
- Andersen B. M., Solberg O. Endotoxin liberation and invasivity of Neisseria meningitidis. Scand J Infect Dis. 1984;16(3):247–254. doi: 10.3109/00365548409070397. [DOI] [PubMed] [Google Scholar]
- Andersen B. M., Solberg O. Endotoxin liberation associated with growth, encapsulation and virulence of Neisseria meningitidis. Scand J Infect Dis. 1988;20(1):21–31. doi: 10.3109/00365548809117213. [DOI] [PubMed] [Google Scholar]
- Caroff M., Tacken A., Szabó L. Detergent-accelerated hydrolysis of bacterial endotoxins and determination of the anomeric configuration of the glycosyl phosphate present in the "isolated lipid A" fragment of the Bordetella pertussis endotoxin. Carbohydr Res. 1988 Apr 15;175(2):273–282. doi: 10.1016/0008-6215(88)84149-1. [DOI] [PubMed] [Google Scholar]
- Cotter R. J., Honovich J., Qureshi N., Takayama K. Structural determination of lipid A from gram negative bacteria using laser desorption mass spectrometry. Biomed Environ Mass Spectrom. 1987 Nov;14(11):591–598. doi: 10.1002/bms.1200141103. [DOI] [PubMed] [Google Scholar]
- Dalla Venezia N., Minka S., Bruneteau M., Mayer H., Michel G. Lipopolysaccharides from Yersinia pestis. Studies on lipid A of lipopolysaccharides I and II. Eur J Biochem. 1985 Sep 2;151(2):399–404. doi: 10.1111/j.1432-1033.1985.tb09115.x. [DOI] [PubMed] [Google Scholar]
- Goldschneider I., Gotschlich E. C., Artenstein M. S. Human immunity to the meningococcus. II. Development of natural immunity. J Exp Med. 1969 Jun 1;129(6):1327–1348. doi: 10.1084/jem.129.6.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hase S., Reitschel E. T. The chemical structure of the lipid A component of lipopolysaccharides from Chromobacterium violaceum NCTC 9694. Eur J Biochem. 1977 May 2;75(1):23–34. doi: 10.1111/j.1432-1033.1977.tb11500.x. [DOI] [PubMed] [Google Scholar]
- Hase S., Rietschel E. T. Isolation and analysis of the lipid A backbone. Lipid A structure of lipopolysaccharides from various bacterial groups. Eur J Biochem. 1976 Mar 16;63(1):101–107. doi: 10.1111/j.1432-1033.1976.tb10212.x. [DOI] [PubMed] [Google Scholar]
- Helander I. M., Lindner B., Brade H., Altmann K., Lindberg A. A., Rietschel E. T., Zähringer U. Chemical structure of the lipopolysaccharide of Haemophilus influenzae strain I-69 Rd-/b+. Description of a novel deep-rough chemotype. Eur J Biochem. 1988 Nov 15;177(3):483–492. doi: 10.1111/j.1432-1033.1988.tb14398.x. [DOI] [PubMed] [Google Scholar]
- Jennings H. J., Bhattacharjee A. K., Kenne L., Kenny C. P., Calver G. The R-type lipopolysaccharides of Neisseria meningitidis. Can J Biochem. 1980 Feb;58(2):128–136. doi: 10.1139/o80-018. [DOI] [PubMed] [Google Scholar]
- Jennings H. J., Hawes G. B., Adams G. A., Kenny C. P. The chemical composition and serological reactions of lipopolysaccharides from serogroups A,B,X, and Y Neisseria meningitidis. Can J Biochem. 1973 Oct;51(10):1347–1354. doi: 10.1139/o73-178. [DOI] [PubMed] [Google Scholar]
- Kasper D. L. Bacterial capsule--old dogmas and new tricks. J Infect Dis. 1986 Mar;153(3):407–415. doi: 10.1093/infdis/153.3.407. [DOI] [PubMed] [Google Scholar]
- Kulshin V. A., Zähringer U., Lindner B., Jäger K. E., Dmitriev B. A., Rietschel E. T. Structural characterization of the lipid A component of Pseudomonas aeruginosa wild-type and rough mutant lipopolysaccharides. Eur J Biochem. 1991 Jun 15;198(3):697–704. doi: 10.1111/j.1432-1033.1991.tb16069.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROBERTS N. R., LEINER K. Y., WU M. L., FARR A. L. The quantitative histochemistry of brain. I. Chemical methods. J Biol Chem. 1954 Mar;207(1):1–17. [PubMed] [Google Scholar]
- Lehmann V., Rupprecht E. Microheterogeneity in lipid A demonstrated by a new intermediate in the biosynthesis of 3-deozy-D-manno-octulosonic-acid--lipid A. Eur J Biochem. 1977 Dec;81(3):443–452. doi: 10.1111/j.1432-1033.1977.tb11969.x. [DOI] [PubMed] [Google Scholar]
- Meyer T. F. Pathogenic neisseriae--a model of bacterial virulence and genetic flexibility. Zentralbl Bakteriol. 1990 Nov;274(2):135–154. doi: 10.1016/s0934-8840(11)80098-8. [DOI] [PubMed] [Google Scholar]
- Michon F., Beurret M., Gamian A., Brisson J. R., Jennings H. J. Structure of the L5 lipopolysaccharide core oligosaccharides of Neisseria meningitidis. J Biol Chem. 1990 May 5;265(13):7243–7247. [PubMed] [Google Scholar]
- Moran A. P., Zähringer U., Seydel U., Scholz D., Stütz P., Rietschel E. T. Structural analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype O:2) lipopolysaccharide. Description of a lipid A containing a hybrid backbone of 2-amino-2-deoxy-D-glucose and 2,3-diamino-2,3-dideoxy-D-glucose. Eur J Biochem. 1991 Jun 1;198(2):459–469. doi: 10.1111/j.1432-1033.1991.tb16036.x. [DOI] [PubMed] [Google Scholar]
- Rietschel E. T. Absolute configuration of 3-hydroxy fatty acids present in lipopolysaccharides from various bacterial groups. Eur J Biochem. 1976 May 1;64(2):423–428. doi: 10.1111/j.1432-1033.1976.tb10318.x. [DOI] [PubMed] [Google Scholar]
- Rietschel E. T., Brade H., Brade L., Brandenburg K., Schade U., Seydel U., Zähringer U., Galanos C., Lüderitz O., Westphal O. Lipid A, the endotoxic center of bacterial lipopolysaccharides: relation of chemical structure to biological activity. Prog Clin Biol Res. 1987;231:25–53. [PubMed] [Google Scholar]
- Rietschel E. T., Brade L., Schade U., Seydel U., Zähringer U., Brandenburg K., Helander I., Holst O., Kondo S., Kuhn H. M. Bacterial lipopolysaccharides: relationship of structure and conformation to endotoxic activity, serological specificity and biological function. Adv Exp Med Biol. 1990;256:81–99. doi: 10.1007/978-1-4757-5140-6_5. [DOI] [PubMed] [Google Scholar]
- STROMINGER J. L., PARK J. T., THOMPSON R. E. Composition of the cell wall of Staphylococcus aureus: its relation to the mechanism of action of penicillin. J Biol Chem. 1959 Dec;234:3263–3268. [PubMed] [Google Scholar]
- Schellekens J. F., Kalter E. S., Vreede R. W., Verhoef J. Host-parasite interaction in serious infections due to gram-negative bacteria. Antonie Van Leeuwenhoek. 1984;50(5-6):701–710. doi: 10.1007/BF02386235. [DOI] [PubMed] [Google Scholar]
- Stellner K., Saito H., Hakomori S. I. Determination of aminosugar linkages in glycolipids by methylation. Aminosugar linkages of ceramide pentasaccharides of rabbit erythrocytes and of Forssman antigen. Arch Biochem Biophys. 1973 Apr;155(2):464–472. doi: 10.1016/0003-9861(73)90138-0. [DOI] [PubMed] [Google Scholar]
- Strain S. M., Armitage I. M., Anderson L., Takayama K., Qureshi N., Raetz C. R. Location of polar substituents and fatty acyl chains on lipid A precursors from a 3-deoxy-D-manno-octulosonic acid-deficient mutant of Salmonella typhimurium. Studies by 1H, 13C, and 31P nuclear magnetic resonance. J Biol Chem. 1985 Dec 25;260(30):16089–16098. [PubMed] [Google Scholar]
- Takayama K., Qureshi N., Hyver K., Honovich J., Cotter R. J., Mascagni P., Schneider H. Characterization of a structural series of lipid A obtained from the lipopolysaccharides of Neisseria gonorrhoeae. Combined laser desorption and fast atom bombardment mass spectral analysis of high performance liquid chromatography-purified dimethyl derivatives. J Biol Chem. 1986 Aug 15;261(23):10624–10631. [PubMed] [Google Scholar]
- Wollenweber H. W., Seydel U., Lindner B., Lüderitz O., Rietschel E. T. Nature and location of amide-bound (R)-3-acyloxyacyl groups in lipid A of lipopolysaccharides from various gram-negative bacteria. Eur J Biochem. 1984 Dec 3;145(2):265–272. doi: 10.1111/j.1432-1033.1984.tb08547.x. [DOI] [PubMed] [Google Scholar]