Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Jun;174(11):3587–3592. doi: 10.1128/jb.174.11.3587-3592.1992

Molecular evolutionary genetics of the cattle-adapted serovar Salmonella dublin.

R K Selander 1, N H Smith 1, J Li 1, P Beltran 1, K E Ferris 1, D J Kopecko 1, F A Rubin 1
PMCID: PMC206045  PMID: 1592813

Abstract

An electrophoretic analysis of allelic variation at 24 enzyme loci among 170 isolates of the serovar Salmonella dublin (serotype 1,9,12[Vi]:g,p:-) identified three electrophoretic types (Du 1, Du 3, and Du 4), marking three closely related clones, one of which (Du 1) is globally distributed and was represented by 95% of the randomly selected isolates. All but 1 of 114 nonmotile isolates of serotype 1,9,12:-:- recovered from cattle and swine in the United States were genotypically Du 1. The virulence capsular polysaccharide (Vi antigen) is confined to clone Du 3, which apparently is limited in distribution to France and Great Britain. For all 29 isolates of Du 3, positive signals were detected when genomic DNA was hybridized with a probe specific for the ViaB region, which contains the structurally determinant genes for the Vi antigen; and 23 of these isolates had been serologically typed as Vi positive. In contrast, all 30 isolates of Du 1 tested with the ViaB probe were negative. These findings strongly suggest that the ViaB genes were recently acquired by S. dublin via horizontal transfer and additive recombination. The clones of S. dublin are closely similar to the globally predominant clone (En 1) of Salmonella enteritidis (serotype 1,9,12:g,m:-) in both multilocus enzyme genotype and nucleotide sequence of the fliC gene encoding phase 1 flagellin. Comparative sequencing of fliC has revealed the molecular genetic basis for expression of the p and m flagellar epitopes by which these serovars are distinguished in the Kauffmann-White serological scheme of classification.

Full text

PDF
3587

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAKER E. E., WHITESIDE R. E., BASCH R., DEROW M. A. The VI antigens of the Enterobacteriaceae. I. Purification and chemical properties. J Immunol. 1959 Dec;83:680–696. [PubMed] [Google Scholar]
  2. Barker R. M., Old D. C. The usefulness of biotyping in studying the epidemiology and phylogeny of salmonellae. J Med Microbiol. 1989 Jun;29(2):81–88. doi: 10.1099/00222615-29-2-81. [DOI] [PubMed] [Google Scholar]
  3. Beltran P., Musser J. M., Helmuth R., Farmer J. J., 3rd, Frerichs W. M., Wachsmuth I. K., Ferris K., McWhorter A. C., Wells J. G., Cravioto A. Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7753–7757. doi: 10.1073/pnas.85.20.7753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beltran P., Plock S. A., Smith N. H., Whittam T. S., Old D. C., Selander R. K. Reference collection of strains of the Salmonella typhimurium complex from natural populations. J Gen Microbiol. 1991 Mar;137(3):601–606. doi: 10.1099/00221287-137-3-601. [DOI] [PubMed] [Google Scholar]
  5. Beninger P. R., Chikami G., Tanabe K., Roudier C., Fierer J., Guiney D. G. Physical and genetic mapping of the Salmonella dublin virulence plasmid pSDL2. Relationship to plasmids from other Salmonella strains. J Clin Invest. 1988 May;81(5):1341–1347. doi: 10.1172/JCI113461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bulgin M. S. Salmonella dublin: what veterinarians should know. J Am Vet Med Assoc. 1983 Jan 15;182(2):116–118. [PubMed] [Google Scholar]
  7. Celum C. L., Chaisson R. E., Rutherford G. W., Barnhart J. L., Echenberg D. F. Incidence of salmonellosis in patients with AIDS. J Infect Dis. 1987 Dec;156(6):998–1002. doi: 10.1093/infdis/156.6.998. [DOI] [PubMed] [Google Scholar]
  8. Chikami G. K., Fierer J., Guiney D. G. Plasmid-mediated virulence in Salmonella dublin demonstrated by use of a Tn5-oriT construct. Infect Immun. 1985 Nov;50(2):420–424. doi: 10.1128/iai.50.2.420-424.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clegg F. G., Wray C., Duncan A. L., Appleyard W. T. Salmonellosis in two dairy herds associated with a sewage farm and water reclamation plant. J Hyg (Lond) 1986 Oct;97(2):237–246. doi: 10.1017/s0022172400065323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Daniels E. M., Schneerson R., Egan W. M., Szu S. C., Robbins J. B. Characterization of the Salmonella paratyphi C Vi polysaccharide. Infect Immun. 1989 Oct;57(10):3159–3164. doi: 10.1128/iai.57.10.3159-3164.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fang F. C., Fierer J. Human infection with Salmonella dublin. Medicine (Baltimore) 1991 May;70(3):198–207. doi: 10.1097/00005792-199105000-00004. [DOI] [PubMed] [Google Scholar]
  12. Fierer J., Fleming W. Distinctive biochemical features of Salmonella dublin isolated in California. J Clin Microbiol. 1983 Mar;17(3):552–554. doi: 10.1128/jcm.17.3.552-554.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fierer J. Invasive Salmonella dublin infections associated with drinking raw milk. West J Med. 1983 May;138(5):665–669. [PMC free article] [PubMed] [Google Scholar]
  14. Franklin A., Linné T., Rehbinder V. Plasmid profile analysis and restriction enzyme fingerprinting of Salmonella DO-group strains. APMIS. 1990 Jul;98(7):665–668. doi: 10.1111/j.1699-0463.1990.tb04986.x. [DOI] [PubMed] [Google Scholar]
  15. Helmuth R., Stephan R., Bunge C., Hoog B., Steinbeck A., Bulling E. Epidemiology of virulence-associated plasmids and outer membrane protein patterns within seven common Salmonella serotypes. Infect Immun. 1985 Apr;48(1):175–182. doi: 10.1128/iai.48.1.175-182.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. JOHNSON E. M., KRAUSKOPF B., BARON L. S. GENETIC MAPPING OF VI AND SOMATIC ANTIGENIC DETERMINANTS IN SALMONELLA. J Bacteriol. 1965 Aug;90:302–308. doi: 10.1128/jb.90.2.302-308.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jacobs J. L., Gold J. W., Murray H. W., Roberts R. B., Armstrong D. Salmonella infections in patients with the acquired immunodeficiency syndrome. Ann Intern Med. 1985 Feb;102(2):186–188. doi: 10.7326/0003-4819-102-2-186. [DOI] [PubMed] [Google Scholar]
  18. Kado C. I., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981 Mar;145(3):1365–1373. doi: 10.1128/jb.145.3.1365-1373.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kolyva S., Waxin H., Popoff M. Y. The Vi antigen of Salmonella typhi: molecular analysis of the viaB locus. J Gen Microbiol. 1992 Feb;138(2):297–304. doi: 10.1099/00221287-138-2-297. [DOI] [PubMed] [Google Scholar]
  20. Lax A. J., Pullinger G. D., Baird G. D., Williamson C. M. The virulence plasmid of Salmonella dublin: detailed restriction map and analysis by transposon mutagenesis. J Gen Microbiol. 1990 Jun;136(6):1117–1123. doi: 10.1099/00221287-136-6-1117. [DOI] [PubMed] [Google Scholar]
  21. Levine W. C., Buehler J. W., Bean N. H., Tauxe R. V. Epidemiology of nontyphoidal Salmonella bacteremia during the human immunodeficiency virus epidemic. J Infect Dis. 1991 Jul;164(1):81–87. doi: 10.1093/infdis/164.1.81. [DOI] [PubMed] [Google Scholar]
  22. McFarland W. C., Stocker B. A. Effect of different purine auxotrophic mutations on mouse-virulence of a Vi-positive strain of Salmonella dublin and of two strains of Salmonella typhimurium. Microb Pathog. 1987 Aug;3(2):129–141. doi: 10.1016/0882-4010(87)90071-4. [DOI] [PubMed] [Google Scholar]
  23. Old D. C. Phylogeny of strains of Salmonella typhimurium. Microbiol Sci. 1984 Jun;1(3):69–72. [PubMed] [Google Scholar]
  24. Popoff M. Y., Miras I., Coynault C., Lasselin C., Pardon P. Molecular relationships between virulence plasmids of Salmonella serotypes typhimurium and dublin and large plasmids of other Salmonella serotypes. Ann Microbiol (Paris) 1984 May-Jun;135A(3):389–398. doi: 10.1016/s0769-2609(84)80080-0. [DOI] [PubMed] [Google Scholar]
  25. Robbins J. D., Robbins J. B. Reexamination of the protective role of the capsular polysaccharide (Vi antigen) of Salmonella typhi. J Infect Dis. 1984 Sep;150(3):436–449. doi: 10.1093/infdis/150.3.436. [DOI] [PubMed] [Google Scholar]
  26. Rubin F. A., Kopecko D. J., Noon K. F., Baron L. S. Development of a DNA probe to detect Salmonella typhi. J Clin Microbiol. 1985 Oct;22(4):600–605. doi: 10.1128/jcm.22.4.600-605.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Selander R. K., Beltran P., Smith N. H., Barker R. M., Crichton P. B., Old D. C., Musser J. M., Whittam T. S. Genetic population structure, clonal phylogeny, and pathogenicity of Salmonella paratyphi B. Infect Immun. 1990 Jun;58(6):1891–1901. doi: 10.1128/iai.58.6.1891-1901.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Selander R. K., Beltran P., Smith N. H., Helmuth R., Rubin F. A., Kopecko D. J., Ferris K., Tall B. D., Cravioto A., Musser J. M. Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect Immun. 1990 Jul;58(7):2262–2275. doi: 10.1128/iai.58.7.2262-2275.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol. 1986 May;51(5):873–884. doi: 10.1128/aem.51.5.873-884.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith B. P., Oliver D. G., Singh P., Dilling G., Martin P. A., Ram B. P., Jang L. S., Sharkov N., Orsborn J. S., Marvin P. A. Detection of Salmonella dublin mammary gland infection in carrier cows, using an enzyme-linked immunosorbent assay for antibody in milk or serum. Am J Vet Res. 1989 Aug;50(8):1352–1360. [PubMed] [Google Scholar]
  31. Smith N. H., Beltran P., Selander R. K. Recombination of Salmonella phase 1 flagellin genes generates new serovars. J Bacteriol. 1990 May;172(5):2209–2216. doi: 10.1128/jb.172.5.2209-2216.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith N. H., Selander R. K. Molecular genetic basis for complex flagellar antigen expression in a triphasic serovar of Salmonella. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):956–960. doi: 10.1073/pnas.88.3.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Smith N. H., Selander R. K. Sequence invariance of the antigen-coding central region of the phase 1 flagellar filament gene (fliC) among strains of Salmonella typhimurium. J Bacteriol. 1990 Feb;172(2):603–609. doi: 10.1128/jb.172.2.603-609.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Snellings N. J., Johnson E. M., Baron L. S. Genetic basis of Vi antigen expression in Salmonella paratyphi C. J Bacteriol. 1977 Jul;131(1):57–62. doi: 10.1128/jb.131.1.57-62.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Snellings N. J., Johnson E. M., Kopecko D. J., Collins H. H., Baron L. S. Genetic regulation of variable Vi antigen expression in a strain of Citrobacter freundii. J Bacteriol. 1981 Feb;145(2):1010–1017. doi: 10.1128/jb.145.2.1010-1017.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Spier S. J., Smith B. P., Tyler J. W., Cullor J. S., Dilling G. W., Da Pfaff L. Use of ELISA for detection of immunoglobulins G and M that recognize Salmonella dublin lipopolysaccharide for prediction of carrier status in cattle. Am J Vet Res. 1990 Dec;51(12):1900–1904. [PubMed] [Google Scholar]
  37. Terakado N., Sekizaki T., Hashimoto K., Naitoh S. Correlation between the presence of a fifty-megadalton plasmid in Salmonella dublin and virulence for mice. Infect Immun. 1983 Jul;41(1):443–444. doi: 10.1128/iai.41.1.443-444.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tompkins L. S., Troup N., Labigne-Roussel A., Cohen M. L. Cloned, random chromosomal sequences as probes to identify Salmonella species. J Infect Dis. 1986 Jul;154(1):156–162. doi: 10.1093/infdis/154.1.156. [DOI] [PubMed] [Google Scholar]
  39. Valone S. E., Chikami G. K. Characterization of three proteins expressed from the virulence region of plasmid pSDL2 in Salmonella dublin. Infect Immun. 1991 Oct;59(10):3511–3517. doi: 10.1128/iai.59.10.3511-3517.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Williamson C. M., Pullinger G. D., Lax A. J. Identification of proteins expressed by the essential virulence region of the Salmonella dublin plasmid. Microb Pathog. 1990 Jul;9(1):61–66. doi: 10.1016/0882-4010(90)90041-n. [DOI] [PubMed] [Google Scholar]
  41. Wolfe M. S., Louria D. B., Armstrong D., Blevins A. Salmonellosis in patients with neoplastic disease. A review of 100 episodes at Memorial Cancer Center over a 13-year period. Arch Intern Med. 1971 Oct;128(4):546–554. doi: 10.1001/archinte.128.4.546. [DOI] [PubMed] [Google Scholar]
  42. Wray C., Wadsworth Q. C., Richards D. W., Morgan J. H. A three-year study of Salmonella dublin infection in a closed dairy herd. Vet Rec. 1989 May 20;124(20):532–537. doi: 10.1136/vr.124.20.532. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES