Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Jun;174(12):3921–3927. doi: 10.1128/jb.174.12.3921-3927.1992

Characterization of cytochromes from Methanosarcina strain Göl and their involvement in electron transport during growth on methanol.

B Kamlage 1, M Blaut 1
PMCID: PMC206100  PMID: 1597414

Abstract

Methanosarcina strain Gö1 was tested for the presence of cytochromes. Low-temperature spectroscopy, hemochrome derivative spectroscopy, and redox titration revealed the presence of two b-type (b559 and b564) and two c-type (c547 and c552) cytochromes in membranes from Methanosarcina strain Gö1. The midpoint potentials determined were Em,7 = -135 +/- 5 and -240 +/- 11 mV (b-type cytochromes) and Em,7 = -140 +/- 10 and -230 +/- 10 mV (c-type cytochromes). The protoheme IX and the heme c contents were 0.21 to 0.24 and 0.09 to 0.28 mumol/g of membrane protein, respectively. No cytochromes were detectable in the cytoplasmic fraction. Of various electron donors and acceptors tested, only the reduced form of coenzyme F420 (coenzyme F420H2) and the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate (CoM-S-S-HTP) were capable of reducing and oxidizing the cytochromes at a high rate, respectively. Addition of CoM-S-S-HTP to reduced cytochromes and subsequent low-temperature spectroscopy revealed the oxidation of cytochrome b564. On the basis of these results, we suggest that one or several cytochromes participate in the coenzyme F420H2-dependent reduction of the heterodisulfide.

Full text

PDF
3921

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell G. R., LeGall L., Peck H. D. Evidence for the periplasmic location of hydrogenase in Desulfovibrio gigas. J Bacteriol. 1974 Nov;120(2):994–997. doi: 10.1128/jb.120.2.994-997.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bobik T. A., Wolfe R. S. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium. Proc Natl Acad Sci U S A. 1988 Jan;85(1):60–63. doi: 10.1073/pnas.85.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Deppenmeier U., Blaut M., Mahlmann A., Gottschalk G. Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton- translocating redox system in methanogenic bacteria. Proc Natl Acad Sci U S A. 1990 Dec 1;87(23):9449–9453. doi: 10.1073/pnas.87.23.9449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dutton P. L. Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. Methods Enzymol. 1978;54:411–435. doi: 10.1016/s0076-6879(78)54026-3. [DOI] [PubMed] [Google Scholar]
  6. ELLMAN G. L. A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys. 1958 Apr;74(2):443–450. doi: 10.1016/0003-9861(58)90014-6. [DOI] [PubMed] [Google Scholar]
  7. ESTABROOK R. W. The low temperature spectra of hemoproteins. I. Apparatus and its application to a study of cytochrome c. J Biol Chem. 1956 Dec;223(2):781–794. [PubMed] [Google Scholar]
  8. Ellermann J., Hedderich R., Böcher R., Thauer R. K. The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem. 1988 Mar 15;172(3):669–677. doi: 10.1111/j.1432-1033.1988.tb13941.x. [DOI] [PubMed] [Google Scholar]
  9. Haase P., Deppenmeier U., Blaut M., Gottschalk G. Purification and characterization of F420H2-dehydrogenase from Methanolobus tindarius. Eur J Biochem. 1992 Feb 1;203(3):527–531. doi: 10.1111/j.1432-1033.1992.tb16579.x. [DOI] [PubMed] [Google Scholar]
  10. Hagihara B., Iizuka T. Studies on low temperature spectra of respiratory pigments. I. Measurement of absorption spectra between liquid helium and room temperatures. J Biochem. 1971 Feb;69(2):355–362. doi: 10.1093/oxfordjournals.jbchem.a129474. [DOI] [PubMed] [Google Scholar]
  11. Hatchikian E. C., Le Gall J. Evidence for the presence of a b-type cytochrome in the sulfate-reducing bacterium Desulfovibrio gigas, and its role in the reduction of fumarate by molecular hydrogen. Biochim Biophys Acta. 1972 Jun 23;267(3):479–484. doi: 10.1016/0005-2728(72)90175-2. [DOI] [PubMed] [Google Scholar]
  12. Hauska G. Elucidation of methanogenesis seems well on its way. Trends Biochem Sci. 1988 Jan;13(1):2–4. doi: 10.1016/0968-0004(88)90003-5. [DOI] [PubMed] [Google Scholar]
  13. Hedderich R., Berkessel A., Thauer R. K. Purification and properties of heterodisulfide reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem. 1990 Oct 5;193(1):255–261. doi: 10.1111/j.1432-1033.1990.tb19331.x. [DOI] [PubMed] [Google Scholar]
  14. Heine-Dobbernack E., Schoberth S. M., Sahm H. Relationship of Intracellular Coenzyme F(420) Content to Growth and Metabolic Activity of Methanobacterium bryantii and Methanosarcina barkeri. Appl Environ Microbiol. 1988 Feb;54(2):454–459. doi: 10.1128/aem.54.2.454-459.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hippe H., Caspari D., Fiebig K., Gottschalk G. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc Natl Acad Sci U S A. 1979 Jan;76(1):494–498. doi: 10.1073/pnas.76.1.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. JACOBS N. J., WOLIN M. J. Electron-transport system of Vibrio succinogenes. I. Enzymes and cytochromes of electron-transport system. Biochim Biophys Acta. 1963 Jan 1;69:18–28. doi: 10.1016/0006-3002(63)91221-6. [DOI] [PubMed] [Google Scholar]
  17. Kühn W., Fiebig K., Walther R., Gottschalk G. Presence of a cytochrome b559 in Methanosarcina barkeri. FEBS Lett. 1979 Sep 15;105(2):271–274. doi: 10.1016/0014-5793(79)80627-4. [DOI] [PubMed] [Google Scholar]
  18. Kühn W., Gottschalk G. Characterization of the cytochromes occurring in Methanosarcina species. Eur J Biochem. 1983 Sep 1;135(1):89–94. doi: 10.1111/j.1432-1033.1983.tb07621.x. [DOI] [PubMed] [Google Scholar]
  19. Mayer F., Rohde M., Salzmann M., Jussofie A., Gottschalk G. The methanoreductosome: a high-molecular-weight enzyme complex in the methanogenic bacterium strain Gö1 that contains components of the methylreductase system. J Bacteriol. 1988 Apr;170(4):1438–1444. doi: 10.1128/jb.170.4.1438-1444.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Noll K. M., Donnelly M. I., Wolfe R. S. Synthesis of 7-mercaptoheptanoylthreonine phosphate and its activity in the methylcoenzyme M methylreductase system. J Biol Chem. 1987 Jan 15;262(2):513–515. [PubMed] [Google Scholar]
  21. Odom J. M., Peck H. D., Jr Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio. Annu Rev Microbiol. 1984;38:551–592. doi: 10.1146/annurev.mi.38.100184.003003. [DOI] [PubMed] [Google Scholar]
  22. PORRA R. J., JONES O. T. Studies on ferrochelatase. 2. An in vestigation of the role offerrochelatase in the biosynthesis of various haem prosthetic groups. Biochem J. 1963 Apr;87:186–192. doi: 10.1042/bj0870186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Probst I., Schlegel H. G. Respiratory components and oxidase activities in Alcaligenes eutrophus. Biochim Biophys Acta. 1976 Aug 13;440(2):412–428. doi: 10.1016/0005-2728(76)90075-x. [DOI] [PubMed] [Google Scholar]
  24. Rouvière P. E., Wolfe R. S. Novel biochemistry of methanogenesis. J Biol Chem. 1988 Jun 15;263(17):7913–7916. [PubMed] [Google Scholar]
  25. Terlesky K. C., Ferry J. G. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J Biol Chem. 1988 Mar 25;263(9):4075–4079. [PubMed] [Google Scholar]
  26. Wilson G. S. Determination of oxidation-reduction potentials. Methods Enzymol. 1978;54:396–410. doi: 10.1016/s0076-6879(78)54025-1. [DOI] [PubMed] [Google Scholar]
  27. Wood P. M. Bacterial proteins with CO-binding b- or c-type haem. Functions and absorption spectroscopy. Biochim Biophys Acta. 1984 Dec 17;768(3-4):293–317. doi: 10.1016/0304-4173(84)90020-x. [DOI] [PubMed] [Google Scholar]
  28. Zahler W. L., Cleland W. W. A specific and sensitive assay for disulfides. J Biol Chem. 1968 Feb 25;243(4):716–719. [PubMed] [Google Scholar]
  29. Zannoni D., Melandri B. A., Baccarini-Melandri A. Energy tranduction in photosynthetic bacteria. XI. Further resolution of cytochromes of b type and the nature of the co-sensitive oxidase present in the respiratory chain of Rhodopseudomonas capsulata. Biochim Biophys Acta. 1976 Dec 6;449(3):386–400. doi: 10.1016/0005-2728(76)90150-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES