Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Jun;174(12):4042–4049. doi: 10.1128/jb.174.12.4042-4049.1992

Biosynthetic precursors of deazaflavins.

B Reuke 1, S Korn 1, W Eisenreich 1, A Bacher 1
PMCID: PMC206114  PMID: 1350778

Abstract

The incorporation of 13C- and 14C-labeled precursors into 5-deaza-7,8-didemethyl-8-hydroxyriboflavin (factor F0) was studied with growing cells of Methanobacterium thermoautotrophicum. 5-Amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione was incorporated into the deazaflavin and into riboflavin without dilution. Tyrosine and 4-hydroxyphenylpyruvate were incorporated into the deazaflavin and into cellular protein. 4-Hydroxybenzaldehyde was not incorporated. A reaction mechanism is proposed for the formation of the deazaflavin chromophore from 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and tyrosine or 4-hydroxyphenylpyruvate.

Full text

PDF
4042

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burrows R. B., Brown G. M. Presence of Escherichia coli of a deaminase and a reductase involved in biosynthesis of riboflavin. J Bacteriol. 1978 Nov;136(2):657–667. doi: 10.1128/jb.136.2.657-667.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Byng G. S., Berry A., Jensen R. A. Evolutionary implications of features of aromatic amino acid biosynthesis in the genus Acinetobacter. Arch Microbiol. 1985 Nov;143(2):122–129. doi: 10.1007/BF00411034. [DOI] [PubMed] [Google Scholar]
  3. Cheeseman P., Toms-Wood A., Wolfe R. S. Isolation and properties of a fluorescent compound, factor 420 , from Methanobacterium strain M.o.H. J Bacteriol. 1972 Oct;112(1):527–531. doi: 10.1128/jb.112.1.527-531.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DOY C. H. Alkaline conversion of 4-hydroxyphenylpyruvic acid to 4-hydroxybenzaldehyde. Nature. 1960 May 14;186:529–531. doi: 10.1038/186529a0. [DOI] [PubMed] [Google Scholar]
  5. Eirich L. D., Vogels G. D., Wolfe R. S. Proposed structure for coenzyme F420 from Methanobacterium. Biochemistry. 1978 Oct 31;17(22):4583–4593. doi: 10.1021/bi00615a002. [DOI] [PubMed] [Google Scholar]
  6. Eisenreich W., Schwarzkopf B., Bacher A. Biosynthesis of nucleotides, flavins, and deazaflavins in Methanobacterium thermoautotrophicum. J Biol Chem. 1991 May 25;266(15):9622–9631. [PubMed] [Google Scholar]
  7. Eker A. P., Dekker R. H., Berends W. Photoreactivating enzyme from Streptomyces griseus-IV. On the nature of the chromophoric cofactor in Streptomyces griseus photoreactivating enzyme. Photochem Photobiol. 1981 Jan;33(1):65–72. doi: 10.1111/j.1751-1097.1981.tb04298.x. [DOI] [PubMed] [Google Scholar]
  8. Elstner E. F., Suhadolnik R. J. The biosynthesis of the nucleoside antibiotics. IX. Purification and properties of guanosine triphosphate 8-formylhydrolase that catalyzes production of formic acid from the ureido carbon of guanosine triphosphate. J Biol Chem. 1971 Nov 25;246(22):6973–6981. [PubMed] [Google Scholar]
  9. Foor F., Brown G. M. Purification and properties of guanosine triphosphate cyclohydrolase II from Escherichia coli. J Biol Chem. 1975 May 10;250(9):3545–3551. [PubMed] [Google Scholar]
  10. Jaenchen R., Schönheit P., Thauer R. K. Studies on the biosynthesis of coenzyme F420 in methanogenic bacteria. Arch Microbiol. 1984 Apr;137(4):362–365. doi: 10.1007/BF00410735. [DOI] [PubMed] [Google Scholar]
  11. Jensen R., Fischer R. The postprephenate biochemical pathways to phenylalanine and tyrosine: an overview. Methods Enzymol. 1987;142:472–478. doi: 10.1016/s0076-6879(87)42058-2. [DOI] [PubMed] [Google Scholar]
  12. Le Van Q., Keller P. J., Bown D. H., Floss H. G., Bacher A. Biosynthesis of riboflavin in Bacillus subtilis: origin of the four-carbon moiety. J Bacteriol. 1985 Jun;162(3):1280–1284. doi: 10.1128/jb.162.3.1280-1284.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lin X. L., White R. H. Occurrence of coenzyme F420 and its gamma-monoglutamyl derivative in nonmethanogenic archaebacteria. J Bacteriol. 1986 Oct;168(1):444–448. doi: 10.1128/jb.168.1.444-448.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nielsen P., Bacher A. Biosynthesis of riboflavin. Characterization of the product of the deaminase. Biochim Biophys Acta. 1981 Dec 15;662(2):312–317. doi: 10.1016/0005-2744(81)90044-9. [DOI] [PubMed] [Google Scholar]
  15. Nielsen P., Neuberger G., Fujii I., Bown D. H., Keller P. J., Floss H. G., Bacher A. Biosynthesis of riboflavin. Enzymatic formation of 6,7-dimethyl-8-ribityllumazine from pentose phosphates. J Biol Chem. 1986 Mar 15;261(8):3661–3669. [PubMed] [Google Scholar]
  16. SENTHESHANMUGANATHAN S. The purification and properties of the tyrosine-2-oxoglutarate transaminase of Saccharomyces cerevisiae. Biochem J. 1960 Dec;77:619–625. doi: 10.1042/bj0770619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Volk R., Bacher A. Studies on the 4-carbon precursor in the biosynthesis of riboflavin. Purification and properties of L-3,4-dihydroxy-2-butanone-4-phosphate synthase. J Biol Chem. 1990 Nov 15;265(32):19479–19485. [PubMed] [Google Scholar]
  18. Young D. W. The biosynthesis of the vitamins thiamin, riboflavin, and folic acid. Nat Prod Rep. 1986 Aug;3(4):395–419. doi: 10.1039/np9860300395. [DOI] [PubMed] [Google Scholar]
  19. Zeikus J. G., Fuchs G., Kenealy W., Thauer R. K. Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J Bacteriol. 1977 Nov;132(2):604–613. doi: 10.1128/jb.132.2.604-613.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES