Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Feb;174(3):867–872. doi: 10.1128/jb.174.3.867-872.1992

The narJ gene product is required for biogenesis of respiratory nitrate reductase in Escherichia coli.

M Dubourdieu 1, J A DeMoss 1
PMCID: PMC206164  PMID: 1732220

Abstract

Respiratory nitrate reductase purified from the cell membrane of Escherichia coli is composed of three subunits, alpha, beta, and gamma, which are encoded, respectively, by the narG, narH, and narI genes of the narGHJI operon. The product of the narJ gene was deduced previously to be a highly charged, acidic protein which was not found to be associated with any of the purified preparations of the enzyme and which, in studies with putative narJ mutants, did not appear to be absolutely required for formation of the membrane-bound enzyme. To test this latter hypothesis, the narJ gene was disrupted in a plasmid which contained the complete narGHJI operon, and the operon was expressed in a narG::Tn10 insertion mutant. The chromosomal copy of the narJ gene of a wild-type strain was also replaced by the disrupted narJ gene. In both cases, when nar operon expression was induced, the alpha and beta subunits accumulated in a form which expressed only very low activity with either reduced methyl viologen (MVH) or formate as electron donors, although an alpha-beta complex separated from the gamma subunit is known to catalyze full MVH-linked activity but not the formate-linked activity associated with the membrane-bound complex. The low-activity forms of the alpha and beta subunits also accumulated in the absence of the NarJ protein when the gamma subunit (NarI) was provided from a multicopy plasmid, indicating that NarJ is essential for the formation of the active, membrane-bound complex. When both NarJ and NarI were provided from a plasmid in the narJ mutant, fully active, membrane-bound activity was formed. When NarJ only was provided from a plasmid in the narJ mutant, a cytosolic form of the alpha and beta subunits, which expressed significantly increased levels of the MVH-dependent activity, accumulated, and the alpha subunit appeared to be protected from the proteolytic clipping which occurred in the absence of NarJ. We conclude that NarJ is indispensible for the biogenesis of membrane-bound nitrate reductase and is involved either in the maturation of a soluble, active alpha-beta complex or in facilitating the interaction of the complex with the membrane-bound gamma subunit.

Full text

PDF
867

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. W., Mortenson L. E. The effect of cyanide and ferricyanide on the activity of the dissimilatory nitrate reductase of Escherichia coli. J Biol Chem. 1982 Feb 25;257(4):1791–1799. [PubMed] [Google Scholar]
  2. Blasco F., Iobbi C., Giordano G., Chippaux M., Bonnefoy V. Nitrate reductase of Escherichia coli: completion of the nucleotide sequence of the nar operon and reassessment of the role of the alpha and beta subunits in iron binding and electron transfer. Mol Gen Genet. 1989 Aug;218(2):249–256. doi: 10.1007/BF00331275. [DOI] [PubMed] [Google Scholar]
  3. Bonnefoy V., Burini J. F., Giordano G., Pascal M. C., Chippaux M. Presence in the 'silent' terminus region of the Escherichia coli K12 chromosome of cryptic gene(s) encoding a new nitrate reductase. Mol Microbiol. 1987 Sep;1(2):143–150. doi: 10.1111/j.1365-2958.1987.tb00506.x. [DOI] [PubMed] [Google Scholar]
  4. Demoss J. A., Fan T. Y., Scott R. H. Characterization of subunit structural alterations which occur during purification of nitrate reductase from Escherichia coli. Arch Biochem Biophys. 1981 Jan;206(1):54–64. doi: 10.1016/0003-9861(81)90065-5. [DOI] [PubMed] [Google Scholar]
  5. Edwards E. S., Rondeau S. S., DeMoss J. A. chlC (nar) operon of Escherichia coli includes structural genes for alpha and beta subunits of nitrate reductase. J Bacteriol. 1983 Mar;153(3):1513–1520. doi: 10.1128/jb.153.3.1513-1520.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Enoch H. G., Lester R. L. The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J Biol Chem. 1975 Sep 10;250(17):6693–6705. [PubMed] [Google Scholar]
  7. Enoch H. G., Lester R. L. The role of a novel cytochrome b-containing nitrate reductase and quinone in the in vitro reconstruction of formate-nitrate reductase activity of E. coli. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1234–1241. doi: 10.1016/s0006-291x(74)80416-x. [DOI] [PubMed] [Google Scholar]
  8. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Li S., Rabi T., DeMoss J. A. Delineation of two distinct regulatory domains in the 5' region of the nar operon of Escherichia coli. J Bacteriol. 1985 Oct;164(1):25–32. doi: 10.1128/jb.164.1.25-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liu J. D., Parkinson J. S. Genetics and sequence analysis of the pcnB locus, an Escherichia coli gene involved in plasmid copy number control. J Bacteriol. 1989 Mar;171(3):1254–1261. doi: 10.1128/jb.171.3.1254-1261.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lund K., DeMoss J. A. Association-dissociation behavior and subunit structure of heat-released nitrate reductase from Escherichia coli. J Biol Chem. 1976 Apr 25;251(8):2207–2216. [PubMed] [Google Scholar]
  13. MacGregor C. H. Biosynthesis of membrane-bound nitrate reductase in Escherichia coli: evidence for a soluble precursor. J Bacteriol. 1976 Apr;126(1):122–131. doi: 10.1128/jb.126.1.122-131.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MacGregor C. H., Schnaitman C. A., Normansell D. E. Purification and properties of nitrate reductase from Escherichia coli K12. J Biol Chem. 1974 Aug 25;249(16):5321–5327. [PubMed] [Google Scholar]
  15. McPherson M. J., Baron A. J., Pappin D. J., Wootton J. C. Respiratory nitrate reductase of Escherichia coli. Sequence identification of the large subunit gene. FEBS Lett. 1984 Nov 19;177(2):260–264. doi: 10.1016/0014-5793(84)81295-8. [DOI] [PubMed] [Google Scholar]
  16. Messing J., Crea R., Seeburg P. H. A system for shotgun DNA sequencing. Nucleic Acids Res. 1981 Jan 24;9(2):309–321. doi: 10.1093/nar/9.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morpeth F. F., Boxer D. H. Kinetic analysis of respiratory nitrate reductase from Escherichia coli K12. Biochemistry. 1985 Jan 1;24(1):40–46. doi: 10.1021/bi00322a007. [DOI] [PubMed] [Google Scholar]
  18. Olmsted J. B. Analysis of cytoskeletal structures using blot-purified monospecific antibodies. Methods Enzymol. 1986;134:467–472. doi: 10.1016/0076-6879(86)34112-0. [DOI] [PubMed] [Google Scholar]
  19. Ruiz-Herrera J., Showe M. K., DeMoss J. A. Nitrate reductase complex of Escherichia coli K-12: isolation and characterization of mutants unable to reduce nitrate. J Bacteriol. 1969 Mar;97(3):1291–1297. doi: 10.1128/jb.97.3.1291-1297.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sodergren E. J., DeMoss J. A. narI region of the Escherichia coli nitrate reductase (nar) operon contains two genes. J Bacteriol. 1988 Apr;170(4):1721–1729. doi: 10.1128/jb.170.4.1721-1729.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sodergren E. J., Hsu P. Y., DeMoss J. A. Roles of the narJ and narI gene products in the expression of nitrate reductase in Escherichia coli. J Biol Chem. 1988 Nov 5;263(31):16156–16162. [PubMed] [Google Scholar]
  22. Stewart V., MacGregor C. H. Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci. J Bacteriol. 1982 Aug;151(2):788–799. doi: 10.1128/jb.151.2.788-799.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  24. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  25. Walker M. S., DeMoss J. A. Deletion analysis of domain independence in the TRP1 gene product of Neurospora crassa. Mol Gen Genet. 1990 Aug;223(1):49–57. doi: 10.1007/BF00315796. [DOI] [PubMed] [Google Scholar]
  26. Walker M. S., DeMoss J. A. Promoter sequence requirements for Fnr-dependent activation of transcription of the narGHJI operon. Mol Microbiol. 1991 Feb;5(2):353–360. doi: 10.1111/j.1365-2958.1991.tb02116.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES